Категории
Самые читаемые
ChitatKnigi.com » 🟠Детская литература » Детская проза » Как мальчик Хюг сам построил радиостанцию - Фрэнсис Ролт-Уилер

Как мальчик Хюг сам построил радиостанцию - Фрэнсис Ролт-Уилер

Читать онлайн Как мальчик Хюг сам построил радиостанцию - Фрэнсис Ролт-Уилер
1 ... 25 26 27 28 29 30 31 32 33 ... 36
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

— Искровой разряд не дает непрерывных волн?

— Нет. Поэтому-то Маркони и пришлось работать по другой системе, предложенной впервые Вином и разработанной Флемингом.

Идея состояла в том, чтобы сделать как раз обратное непрерывным волнам, т. е. в том, чтобы ослабевающий ряд волн еще больше ослабить, и сделать это так быстро, чтобы можно было принимать в расчет только первый толчок. Вин достигал этого посредством того, что у него искра в металлической цепи получалась не между шариками, а между металлическими пластинками. Он брал ряд из 10 металлических пластинок, отстоящих друг от друга на 1/50 дюйма; вследствие охлаждения металлических поверхностей искра получалась настолько ослабленной, что антенна получала чистое возбуждение.

Разрядник Вина.

Флеминг еще усовершенствовал это: у него металлические пластинки с искровым промежутком вращались в масле, так что была устранена возможность возникновения дуги между концами промежутка.

Маркони сделал большой шаг вперед по сравнению с Вином и Флемингом своим изобретением дискового разрядника, вращающегося с большой скоростью; стальной диск с выступающими по обе стороны шпеньками вращается с большой скоростью между двумя другими дисками, вращающимися в свою очередь под прямым углом к нему, и включенными в одну цепь с конденсатором.

Каждый раз, когда шпенек проходит под двумя большими дисками, создавая небольшой искровой промежуток, в цепи диск — конденсатор — трансформатор создаются колебания. Скорость вращения среднего диска так велика, что он разрывает цепь конденсатора, немедленно прекращает колебания в конденсаторе и возбуждает в антенне колебание одной частоты. В следующей стадии изобретения Маркони диск был гладкий; он был устроен по тому же принципу, но без шпеньков и приспособлен к посылке незатухающих волн. С помощью этого прибора впервые удалось телеграфировать через Атлантический океан.

— Но я читал, что для этого он отказался от применения батареи.

— Да, он пользовался индукторным альтернатором, о котором тебе говорил Джед Блэден. Мы здесь поставим такой. Но он пользовался все-таки искровым разрядником. Первый аппарат для телеграфирования через океан состоял из машины в двадцать пять сил и альтернатора переменного тока низкой частоты, при напряжении 2000 вольт, и заряжал специально устроенные конденсаторы, состоящие из лейденских банок, погруженных в изолирующее масло. Конденсаторы разряжались раньше с помощью вращающихся дисков Флеминга, а затем с помощью диска с зубьями Маркони.

Одиннадцатого декабря 1901 года, памятный день в истории радиотелеграфии, Маркони получил на острове Ньюфаундленд сигнал букву «S», посланный Флемингом из Польдью (Англия). Новые станции сейчас же были устроены в Клифдене (Ирландия), Ледяной бухте (Новая Шотландия) и мысе Код-Масачузетс. В Клифдене пользовались дисковым разрядником Маркони, причем была применена новая система конденсаторов, состоявших из полированных металлических листов, висящих в воздухе, заменивших классическое стекло и фольгу.

22 декабря 1902 г. через Атлантический океан была послана первая радиотелеграмма, а через три месяца началось регулярное сообщение по беспроволочному телеграфу.

К 1907 году радиотелеграфия достигла такого развития, что обслуживала газеты; дальнейшее развитие пошло быстро, и в настоящее время беспроволочный телеграф охватил весь мир и каждая значительная страна сообщается со своими отдаленными владениями по радио: Америка с Филиппинами, Англия с Австралией, Франция с Индокитаем.

Прежде, чем перейти к дальнейшему, я хочу сказать тебе, что искрогасящая система Вина, усовершенствованная Флемингом и примененная Маркони для первых телеграмм через океан, не оставлены и до сих пор. Часто сигналы от передатчиков, работающих с гасящей искрой, дают в телефонной трубке музыкальный тон, искры следуют одна за другой очень быстро и регулярно. Таким образом, хотя эти волны и затухающие, но они дают результат такой же, как и непрерывные.

Если телеграфист может посылать сигналы со скоростью двадцати слов в минуту (часто они передают гораздо скорее), точка должна была бы занимать 1/20 секунды. При частоте разрядного диска в 1.000 в секунду, точка будет состоять из пятидесяти искр, достаточно для того, чтобы в телефонной трубке была слышна нота, высота которой может быть по желанию изменена с помощью увеличения или уменьшения числа искр в секунду.

Это даст возможность принимающему выделить звук предназначаемого ему сигнала.

К системам, дающим эти музыкальные искры, относятся системы Вина, ф. — Лепеля, а также Телефункен. Последняя развилась в одну из наиболее значительных германских систем (на некоторых станциях немцы пользуются альтернаторами), которой перед войной пользовались для поддержки сношений через океан с Америкой; после войны она применяется на некоторых русских станциях.

— Ну, а теперь, какие ты еще знаешь системы передачи?

— Я читал, что есть другие системы, но не знаю о них ничего. Кажется, они применяются только на больших станциях.

— Ничего подобного. Принципы, годные для больших станций, годны и для маленьких, но не наоборот. Тебе необходимо познакомиться с другими системами.

Есть три главных системы (не считая вновь призванной к жизни для сношений в шахтах — индукционной): дуга Паульсена, альтернаторная система — тип Александерсена и Гольдшмита, и система термионной лампы Флеминга, больше известной под именем катодной лампы. Значение этой системы возрастает с каждым днем. На многих станциях «лампа» вытеснила искру, вытесняет дугу, а недавно большие лампы были установлены для работы через океан взамен больших альтернаторов. Результаты были настолько хороши, что принимающие станции по другую сторону океана даже не подозревали, что произошли какие-нибудь перемены.

Прежде всего займемся электрической дугой. Что ты знаешь о ней?

— Ничего, — ответил мальчик. — Я никогда ее не видел. Я видел на картинках электрическое освещение с помощью дуги, но я никогда не был в большом городе. Я не знаю, как она работает, потому что все статьи в журнале о радио с помощью дуги считают, что устройство дуги всем известно.

— Значит, тебе надо начать с самого начала. Когда электрический ток непрерывно или почти непрерывно идет через маленький промежуток в цепи — промежуток, наполненный воздухом или другим газом при атмосферном давлении, получается непрерывный разряд, называемый дугой. Она ионизирует воздух, если ты знаешь, что это значит.

— Знаю, — сказал Хюг. — Доктор Камерон мне объяснил, когда говорил мне о теории электронов: атомы разбиваются, и ионы, разлетаясь в воздухе, делают воздух проводником.

— Вроде этого. Дуговая лампа, употребляемая для уличных фонарей, состоит из пары угольных стержней с кончиками близко один от другого. Когда через кончик проходит ток, уголь накаляется и дает яркий свет. Промежуток между кончиками наполнен раскаленными парами углерода, что делает свет еще ярче.

— Так это вроде искры, — сказал мальчик.

— Нет, этого нельзя назвать искрой теоретически, может быть, и трудно точно разграничить одно от другого. Дуговые разряды постоянны и почти непрерывны, искровые же временные и прерывающие. Кроме того, способ устройства и пользования дугой совершенно отличен от приборов с искрой. В 1910 г. англичанин Дудделль нашел, что если цепь, состоящая из самоиндукции и емкости, шунтирует дугу постоянного тока, дуга может издать музыкальный звук. Он предположил наличие колебаний и проверил это, включив в цепь измерительный инструмент.

Схема дуги Дудделля.

План Дудделля прост. К положительному углю дуги он присоединил короткую проволоку внутренней обкладки лейденской банки; к отрицательному он присоединил наружную обкладку через катушку самоиндукции с большим числом витков. Лейденская банка (конденсатор) дала ему энергию, катушка — инерцию. Как только ток появлялся, через ничтожную долю секунды в катушке появлялись колебания большой частоты. Понимаешь, почему?

Мальчик отрицательно покачал головой.

— Чтобы понять это, надо знать, что электрическая дуга, рассматриваемая как проводник электричества, обладает некоторыми особенностями. Не все проводники оказывают одинаковое действие на ток, но, как общее правило, ток прямо пропорционален элекродвижущей силе и электропроводности проводника. Это называется законом Ома. Угольные пары в дуговой лампе не подчиняется этому закону. Наоборот, усиление тока, проходящего через дугу уменьшает разность потенциалов между углями; ослабление тока ведет к увеличению разности потенциалов.

Теперь посмотрим, что же произошло в приборе Дудделля, где цепь, в которую были включены конденсатор и катушка, проходила кругом дуги с постоянным током. Как только в этой цепи появлялся ток, часть тока, проходящего через дугу, уходила на заряжение конденсатора. Это ослабляло дугу, но, в силу особенностей раскаленного угольного газа, эта потеря тока увеличивала разность потенциалов между углями, одновременно увеличивая разность потенциалов между обкладками лейденской банки. Это продолжалось до тех пор, пока банка не была заряжена. Если банка не была больше в состоянии извлекать ток, сила тока, проходящего через дугу возрастала до своей нормы; вследствие этого уменьшалась разность потенциалов углей, и полностью заряженный конденсатор разряжался через дугу. Немедленно после разряда противоположные токи нейтрализовались и цикл начинался сначала.

1 ... 25 26 27 28 29 30 31 32 33 ... 36
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?