Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Биология » Рассказы о биоэнергетике - Скулачев Петрович

Рассказы о биоэнергетике - Скулачев Петрович

Читать онлайн Рассказы о биоэнергетике - Скулачев Петрович
1 ... 24 25 26 27 28 29 30 31 32 ... 40
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Неодимовый лазер, система зеркал, ячейка с коллодиевой пленкой и протеолипосомами, каскад быстродействующих усилителей электрических сигналов, блок памяти, ЭВМ и особая система, синхронизирующая работу оптической и электрической систем с точностью до сотых долей микросекунды. Как разительно отличается эта установка от аппаратуры первых опытов биоэнергетиков, где, кроме манометра и примитивного колориметра, никаких других приборов не требовалось! Отсчет времени тогда шел в минутах, а за процессом следили по убыли кислорода и фосфата, если измерялось окислительное фосфорилирование в митохондриях. О пространственном векторе процесса вообще не было и речи. Точность измерения зависела от того, насколько вам удалось совместить уровень ваших глаз с уровнем жидкости в манометре.

Теперь вместо сложно устроенных митохондрий наш объект — индивидуальный, белок, временная шкала — доли микросекунды, а задача — проследить за передвижением протона, путешествующего от одной поверхности мембраны к другой по встроенной в эту мембрану белковой молекуле.

Но как сработает вся эта громада аппаратуры? Хватит ли чувствительности вольтметра? Не затрубит ли какая-нибудь паразитная емкость шкалу времени?

Драчев уверен, что все будет в порядке. Его гарантия — залог успеха. Говорят, что у Драчева есть необычайное свойство: в его присутствии любой прибор работает нормально.

И вот наконец долгожданный опыт. Еще вчера А. Каулен приготовил протеолипосомы из бактериородопсина и соевого фосфолипида. Другим фосфолипидом пропитана коллодиевая пленка, закрепленная в отверстии между отсеками с электродами. В один из отсеков три часа назад добавили протеолипосомы. За это время они должны были прилепиться к поверхности пленки.

Проверяем аппаратуру. Луч осциллографа пробегает наискосок зеленый экран, оставляя за собой светлый немеркнущий след. Это разряжается «темновая» разность потенциалов между электродами, только что опущенными в измерительную ячейку.

Еще несколько минут ожидания. «Темновая» разность потенциалов исчезла — осциллограф чертит одну за другой горизонтальные прямые, ложащиеся след в след. Это нулевая линия.

Ну что ж, попробуем для начала повторить наш старый добрый опыт по генерации фотопотенциала при постоянном освещении. Л. Драчев опускает тумблер, чтобы остановить бесконечный бег нулевой.

Нажата кнопка, и отверстие, ведущее к ячейке, освещается постоянным светом мощной лампы. Перевожу взгляд на экран. Здесь записан мощный фотоэффект: между электродами возникла разность потенциалов порядка 200 милливольт. Выключаем свет: кривая отклоняется вниз, неудержимо стремясь к нулевому уровню.

Порядок. Теперь черед за лазером. Какую выбрать измерительную шкалу? Конечно, почувствительней. Ведь бактериородопсин сработает всего один-единственный раз.

Вспышка. На какое-то мгновение (мы знаем, на какое — 3bull;10-8 секунды!) ячейка высвечивается яркой зеленой молнией. Луч осциллографа взметнулся вверх, зашкалил и вернулся назад, к нулю. Есть ответ, да какой — не хватило шкалы!

Ученые в работе

Взяли в 10 раз более грубую шкалу, снова вспышка, снова зашкал. Еще в 10 раз загрубили шкалу, и опять недостаточно. Лишь с четвертого раза удалось наконец записать фотоэффект. Он оказался около 60 милливольт.

Да, с таким эффектом работать можно! Но стоило ли городить всю эту махину? Пока что из всех новшеств потребовался один только лазер.

Эффект хорош, что и говорить! Такого еще не видел никто: генерация потенциала при однократном срабатывании бактериородопсина! Но ведь это не цель, а лишь необходимое условие, чтобы двигаться дальше. Нам надо знать, как переносится протон.

Внимательно рассматриваем кривую нарастания фотопотенциала после вспышки лазера. Нет, эта техника все же чудо! Потенциал нарастал в течение каких-то десяти миллисекунд. Блок памяти запомнил кривую и выдал на осциллограф, который записал ее за две секунды. Мы замедлили время в 200 раз. А потом и вовсе остановили его. Теперь кривая на экране будет светиться до тех пор, пока в этом есть необходимость. Да, кривая красива: на первый взгляд настоящая экспонента. Только в самом начале какая-то излишняя крутизна. Вводим кривую в ЭВМ. Программист А. Драчев просит вычислительную машину измерить временную шкалу в самом начале кривой. Теперь это будут не милли-, а микросекунды...

Занятна сама процедура общения с этой машиной. Нажав тумблер, мы вводим кривую в память машины. Затем программист печатает на клавишах вроде бы обычной пишущей машинки свою просьбу к ЭВМ. Печатает не какой-нибудь код, а прямо-таки наши обычные, человеческие слова. Этот текст немедленно воспроизводится на экране.

Вскоре на том же экране появляются слова, программистом не напечатанные. Это уже речь самой машины. Она сообщает, что приняла информацию.

Несколько секунд, и на другом экране возникает наша кривая, но теперь уже начало ее дано в микросекундной шкале.

Машина спрашивает, довольны ли мы ее работой. Мы в восхищении, но А. Драчев считает, что великоваты шумы, и просит машину усреднить данные. Еще несколько секунд, и появляется новый вариант нашей кривой — краше прежнего!

А ведь не зря А. Драчев убрал шумы! Теперь видно, что в действительности кривая генерации фотопотенциала состоит из трех фаз. Первая невелика по амплитуде и направлена противоположно основным фазам II и III. Она завершается быстрее, чем может измерить даже наша сверхбыстрая техника (время ее возникновения меньше 10-7 секунды). Фаза II заканчивается к сотой микросекунде, а фаза III — к двадцатой миллисекунде после вспышки.

Получив этот результат, мы решили заменить воду в ячейке на D2O, тяжелую воду, в расчете на то, что это замедлит фазы генерации фотопотенциала, которые связаны с переносом Н+ (известно, что все процессы, где участвует ион водорода, замедляются, если вместо него в среде присутствует ион дейтерия, D+).

Вспышка лазера, и на экране дисплея ЭВМ яркий зеленый лучик выписывает динамику фотоэффекта в D2O. Фазы II и III явно затянуты. А. Драчев приказывает машине рассчитать время, за которое фаза II достигает 50 процентов своей величины. Это время заметно больше в D2O, чем в Н2О. То же для фазы III.

Для наглядности программист вызывает из недр памяти ЭВМ кривую прошлого опыта (с обычной водой). На это уходит всего несколько секунд. Лучик рисует другую кривую, она ложится гораздо левее той, которая была только что получена в опыте с D2O.

А что с фазой I? К сожалению, ее скорость в D2O все еще слишком велика и потому ускользает от измерения.

Из опыта с D2O можно было заключить, что по крайней мере фазы II и III как-то связаны с переносом Н+.

Независимое подтверждение этого вывода было получено, когда мы сопоставили наши кривые с динамикой спектральных превращений бактериородопсина.

Как показали в свое время У. Стокениус и Д. Остерхельт, поглощение кванта света бактериородопсином ведет к весьма характерному изменению его окраски: сначала спектральный максимум бактериородопсина несколько смещается в красную область, затем происходит резкий сдвиг в противоположную (синюю) область, после чего максимум возвращается в исходное положение.

Так вот времена этих трех спектральных сдвигов оказались весьма сходными с тремя фазами обнаруженного нами фотоэлектрического эффекта: красный сдвиг неизмеримо быстр, синий — десятки микросекунд, возврат к исходному положению — десятки миллисекунд. Мы повторили спектральные измерения Стокениуса и Остерхельта в условиях нашего эксперимента и убедились в хорошей корреляции спектрального и электрического ответов.

Из работ А. Льюса было известно, что синий сдвиг в окраске бактериородопсина обусловлен отщеплением протона от атома азота в альдиминной группе бактериородопсина, а последующий обратный сдвиг — протонированием того же атома.

Теперь сопоставим основные факты, чтобы попытаться представить себе механизм генерации протонного потенциала бактериородопсином. Факты таковы:

1) бактериородопсин переносит протон через мембрану бактерии в направлении изнутри (из цитоплазмы бактериальной клетки) наружу, в омывающий бактерию раствор. Этот процесс сопряжен с поглощением кванта света;

2) свет вызывает изомеризацию ретиналевого остатка, прикрепленного к белковой части бактериородопсина через альдимин, который протонирован в темноте и депротонирован на свету;

3) процесс генерации потенциала при транспорте

протона складывается из трех стадий (фаз), сильно различающихся по своим скоростям;

4) каждой из этих фаз соответствует определенный спектральный переход, причем фаза II коррелирует с депротонированием альдимина, в то время как фаза III -- с последующим присоединением к нему протона.

1 ... 24 25 26 27 28 29 30 31 32 ... 40
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?