Как же называется эта книга - Рэймонд Смаллиан
Шрифт:
Интервал:
Закладка:
149. Если бы сидящий на троне был лжецом, то он был бы либо лжецом, либо обезьяной. Следовательно, его высказывание было бы истинным вопреки тому, что он лжец. Значит, сидящий на троне - рыцарь, его высказывание истинно, и он либо лжец, либо обезьяна. Так как он нелжец, то он обезьяна.
Итак, сидящий на троне - обезьяна и рыцарь.
150. Ясно, что сидящий на троне не рыцарь. Значит, он лжец, и его высказывание ложно. Следовательно, он либо рыцарь, либо человек. Так как он не рыцарь, то он человек. Итак, сидящий на троне - человек и лжец.
151. Предположим, что сидящий на троне был бы лжецом. Тогда было бы верно, что он не обезьяна и не рыцарь одновременно.
Следовательно, его высказывание было бы истинным, и мы получили бы лжеца, способного высказывать истинные утверждения. Полученное противоречие показывает, что сидящий на троне - рыцарь. Следовательно, верно, что он не обезьяна и не рыцарь. Если бы он был обезьяной, то он был бы обезьяной и рыцарем. Значит, он человек. Итак, сидящий на троне человек и рыцарь.
152. B не может быть лжецом, так как в противном случае его утверждение было бы истинным. Значит, B - рыцарь, поэтому его утверждение истинно, и A должен быть лжецом. Тогда утверждение A ложно, и A и B - оба люди. Следовательно, A - человек и лжец, а B - человек и рыцарь
153. B должен быть лжецом, так как рыцарь не мог бы высказать утверждение B. Следовательно, A и B оба не могут быть лжецами, поэтому A - рыцарь. Значит, его утверждение истинно, и A и B - оба обезьяны. Итак, A - обезьяна и рыцарь, B - обезьяна и лжец.
154. Предположим, что B был бы рыцарем. Тогда A также был бы рыцарем (так как B утверждает, что A - рыцарь), и, следовательно, B должен бы быть лжецом и обезьяной.
Полученное противоречие показывает, что B - лжец. Из его утверждения мы заключаем, что A также лжец. Так как первое утверждение, высказанное A, ложно, то не верно, что B - лжец и обезьяна. Но B - лжец. Следовательно, не верно, что B - обезьяна, поэтому B - человек и лжец. Из второго утверждения, высказанного A, следует, что A - обезьяна. Итак, A - обезьяна и лжец.
155. Прежде всего докажем, что G - рыцарь. Для этого достаточно доказать, что его утверждение истинно, то есть что если C - рыцарь, то F также рыцарь. Мы докажем это тем, что выведем из посылки "С - рыцарь" заключение "F также рыцарь". Итак, предположим, что C - рыцарь. Тогда A и B - оба рыцари. Следовательно, X - дверь, ведущая во Внутреннее святилище, и либо дверь Y, либо дверь Z ведет во Внутреннее святилище.
Случай 1: дверь Y ведет во Внутреннее святилище. Тогда обе двери X и Y ведут во Внутреннее святилище. В этом случае D - рыцарь.
Случай 2: дверь Z ведет во Внутреннее святилище. Тогда обе двери X и Z ведут во Внутреннее святилище. В этом случае E - рыцарь.
Итак, либо D, либо E должен быть рыцарем. Следовательно, высказанное F утверждение истинно, поэтому F - рыцарь.
Итак, из посылки "С - рыцарь" мы вывели заключение "Р - рыцарь". Следовательно, верно, что если C - рыцарь, то Р - рыцарь. Именно это и утверждал G. Значит, G - рыцарь.
Докажем теперь, что высказанное H утверждение истинно. По словам H, если G и H - оба рыцари, то A - рыцарь.
Предположим, что H - рыцарь. Тогда G и H - оба рыцари.
Кроме того, верно, что если G и H - оба рыцари, то A - рыцарь (именно так утверждал H, а он по предположению рыцарь). Значит, если H рыцарь, то 1) G и H - рыцари; 2) если G и H - рыцари, то A - рыцарь. Из (1) и (2) следует, что A - рыцарь. Таким образом, если H - рыцарь, то A рыцарь. Именно это утверждал H, поэтому H должен быть рыцарем. Его утверждение истинно, и так как G и H - рыцари, то A - рыцарь.
Итак, мы установили, что A - рыцарь. Следовательно, дверь X действительно ведет во Внутреннее святилище, и нашему философу надлежит выбрать дверь X.
156. Первый жрец не может быть рыцарем, он должен быть лжецом. Поскольку его высказывание ложно, то не верно, что он лжец и не знает ответа на. Вопрос Вопросов. Но он лжец, поэтому первая часть высказанной им конъюнкции истинна.
Значит, вторая часть конъюнкции должна быть ложной, поэтому первый жрец знает ответ. Таким образом, первый жрец - лжец и знает ответ на Вопрос Вопросов.
Относительно второго жреца нельзя сказать ничего определенного. Он либо рыцарь, не знающий ответа на Вопрос Вопросов, либо лжец. Во всяком случае (и это имеет решающее значение для решения следующей задачи), если он знает ответ на Вопрос Вопросов, то он лжец.
157. Из решения предыдущей задачи нам известно, что первый жрец знает ответ на Вопрос Вопросов и лжет, а второй жрец, если он знает ответ на Вопрос Вопросов, - лжец. По условиям задачи тот из жрецов, кто изрек: "Существует нечто, а не ничто", знал правильный ответ. Следовательно, тот, кто дал такой ответ, лжец, и высказанное им утверждение ложно. Ничто не существует!
Итак, в результате самоотверженного поиска ответа на Вопрос Вопросов, которому наш философ посвятил всю свою жизнь, выяснилось неожиданно, что "ничто не существует". Должно быть, в этот ответ вкралась какая-то ошибка: если из ничего ничего не возникает, то откуда взялся жрец, высказавший подобное утверждение?
Более правильное заключение, к которому можно прийти на основании полученного ответа, состоит в том, что остров Ваал, описанный в нашей книге, не может существовать.
Считаю своим долгом обратить внимание читателя на одну тонкость. Я отнюдь не утверждаю, что остров Ваал не существует (это было более или менее ясно с самого начала). Я высказываю более сильное логически неопровержимое утверждение: остров Ваал не может существовать. Действительно, если бы остров Ваал не существовал и история, которую я вам поведал, была бы истинной, то, как было показано, отсюда следовало бы, что ничто не существует. Следовательно, не существовало бы и острова Ваал, и мы пришли бы к противоречию. Значит, остров Ваал не может существовать.
Самое любопытное во всей истории - это то, что вплоть до последней задачи (Э 157) все, о чем я рассказывал вам, сколь бы неправдоподобно оно ни звучало, было логически вполне допустимо. Но стоило мне сообщить вам условия последней задачи, как соломинка переломила спину верблюду!
XI. Остров зомби
А. "БАЛ" и "ДА"
На небольшом островке неподалеку от Таити колдуны вуду напустили порчу на половину населения и превратили ее в зомби. Нужно сказать, что зомби на этом острове ведут себя несколько необычно. Они ничуть не похожи на безмолвные тени или на духов смерти. Зомби двигаются и разговаривают так же, как и люди. Единственное, чем они отличаются от людей, необыкновенным пристрастием ко лжи. Зомби всегда лгут, в то время как люди, обитающие на острове, говорят только правду.
Дочитав до этого места, вы, должно быть, подумали: "К чему столько слов? Не проще ли сразу сказать, что перед нами добрый старый остров рыцарей и лжецов?" Не торопитесь с выводами, читатель: на острове зомби все обстоит гораздо сложнее! Дело в том, что хотя все его жители в совершенстве владеют английским языком, древнее табу запрещает им употреблять иноязычные слова. На любой вопрос, требующий ответа либо "да", либо "нет", жители острова отвечают либо "бал", либо "да" (на их родном языке эти слова соответствуют более привычным для нас "да" и "нет").
Беда лишь в том, что мы не знаем, какое из слов "бал" и "да" означает "нет" и какое - "да".
158.
Однажды я встретил коренного жителя острова и спросил у него: "Означает ли "бал" по-нашему "да"? Тот ответил:
"бал".
а) Можно ли из нашего разговора заключить, что означает слово "бал"?
б) Можно ли из нашего разговора заключить, кто мой собеседник: зомби или человек?
159.
Представьте себе, что, гуляя по острову, вы встретили одного из туземцев. Можно ли с помощью одного вопроса выяснить, что означает слово "бал"? (Напомним, что ваш собеседник на все ваши вопросы будет отвечать либо "бал", либо "да", причем слово "да" на местном наречии лишь в силу случайного совпадения созвучно утвердительному ответу "да".)
160.
Предположим, что вас не интересует, чему именно соответствует слово "бал" (отрицанию или утвердительному ответу), но вы хотите знать, с кем вы разговариваете: с зомби или с человеком. Можно ли выяснить это, задав собеседнику лишь один вопрос?
161. Как заставить колдуна сказать "бал".
Вы находитесь на том же острове, что и в предыдущих задачах, и хотите жениться на дочери царька местного племени. Царец намерен отдать свою дочь замуж только за человека, отмеченного печатью разума, поэтому вам предстоит выдержать испытание, состоящее в следующем.
Вы должны задать колдуну какой-нибудь вопрос на свое усмотрение. Если колдун ответит "бал", то вы получите в жены дочь царька. Если же на ваш вопрос колдун ответит "да", вам придется искать себе невесту в другом месте.
Кто именно колдун (человек или зомби), неизвестно. Какой вопрос следует задать колдуну, чтобы независимо от того, означает ли "бал" нет или да, колдун ответил "бал"?
162.
Эта задача потруднее предыдущих. Разнесся слух, что на острове зарыт клад. Вы прибываете на остров и, прежде чем приступать к поискам, хотите выяснить, действительно ли кем-то был зарыт клад или нет. Все туземцы великолепно осведомлены относительно того, существует ли клад в действительности. Можно ли, задав любому туземцу лишь один вопрос, выяснить, стоит ли заниматься поисками клада?