Категории
Самые читаемые
ChitatKnigi.com » 🟠Проза » Современная проза » Основы общей экологии - Л. Наумова

Основы общей экологии - Л. Наумова

Читать онлайн Основы общей экологии - Л. Наумова
1 ... 22 23 24 25 26 27 28 29 30 ... 49
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Есть примеры более сложных взаимоотношений «паразит – хозяин» с посредником. Так гетеротрофное растение-паразит подъельник паразитирует на грибах, разлагающих мертвое органическое вещество, но, кроме того, по гифам микоризного гриба, как по шлангу, выкачивает питательные элементы из корней ели.

Контрольные вопросы

1. Чем паразиты отличаются от хищников?

2. Расскажите о разнообразии паразитов.

3. Какие защитные реакции против паразитов вырабатываются у хозяев?

4. Расскажите о нарушении экологического равновесия в паре «паразит – хозяин» при вмешательстве человека.

8.6. Мутуализм

Мутуализм это форма взаимоотношений организмов, при которых партнеры получают пользу.

Отношениями мутуализма связаны организмы, не конкурирующие за ресурсы. Мутуализм включает разнообразные формы сотрудничества – от облигатного (симметричного или асимметричного), при нарушении которого гибнут оба или один сотрудничающий партнер, до факультативного, которое помогает выживать партнерам, но не является для них обязательным (так называемаяпротокооперация). Рассмотрим основные варианты мутуализма.

Растения и микоризные грибы. Такие взаимоотношения с грибами (микотрофия) свойственны большинству видов наземных сосудистых растений (цветковых, голосеменных, папоротников, хвощей, плаунов), что во многом облегчило заселение растениями суши (Заварзин, 2000). Микоризные грибы могут оплетать корень растения и проникать в ткани корня, не нанося ему при этом существенного ущерба (эндотрофные и эктотрофные микоризы).

Грибы, не способные к фотосинтезу, получают из корней растений органические вещества, а у растений за счет разветвленных грибных нитей в сотни и тысячи раз увеличивается всасывающая поверхность корней. Кроме того, некоторые микоризные грибы не просто пассивно всасывают элементы питания из почвенного раствора, но и одновременно выступают в роли редуцентов и разрушают сложные вещества до более простых. Кроме того, микоризные грибы, выделяя антибиотики, защищают корни растений от патогенов.

Микоризные грибы – «дорогое удовольствие» для растений, так как использование их в качестве посредников для обеспечения элементами питания и водой сопряжено со значительными затратами продуктов фотосинтеза (1/3 или даже 1/2 валовой первичной продукции). По этой причине при улучшении условий минерального питания, например при удобрении лугов, даже типичные микотрофные растения отказываются от микориз и переходят на «самообслуживание». Не тратятся на содержание микориз виды-нитрофилы (распространенные на почвах с высоким содержанием нитратного азота) из семейств маревых, крестоцветных и некоторых других, которые селятся на первых стадиях восстановления экосистем после нарушений (см. 12.6), когда за счет минерализации органического вещества в почве резко возрастает количество нитратов. При этом микоризы, которыми обладают виды следующих стадий сукцессии, выделяют вещества, подавляющие «самостоятельные» растения. Это ускоряет процесс вытеснения нитрофилов.

Микоризы нет у водных растений, и сравнительно редко она встречается у растений экстремальных условий – пустынь, горных и арктических тундр. Как подчеркивает Т.А. Работнов (1992), большинство микотрофов – это мезофиты умеренно богатых почв.

Микоризы у травянистых растений, как правило, не видоспецифичны (т.е. один вид грибов может формировать микоризу у разных растений), а у древесных – видоспецифичны. Таким образом, плодовые тела подберезовика, подосиновика, масленка или рыжика образуются за счет продукции фотосинтеза соответствующих видов деревьев.

Поскольку микоризные грибы оплетают корни нескольких рядом произрастающих растений, по ним возможен горизонтальный перенос элементов питания от одного растения к другому по «гифопроводам». А.М. Гиляров (2003) рассматривает это как «экзаптации на уровне сообществ», т.е. как побочный эффект адаптации микоризного гриба к нескольким видам растений. Данных о количестве веществ, перекачиваемых по микоризам из одного растения в другое, мало. Можно полагать, что оно невелико, тем не менее смягчает отношения конкуренции и повышает общую устойчивость экосистем.

Растения и микроорганизмы-азотфиксаторы. Возможны две формы такого мутуализма – облигатный мутуализм и протокооперация. В первом случае азотфиксирующие микроорганизмы живут в корнях растений (бобовых, облепихи, ольхи и некоторых других), вызывая образование клубеньков. Процесс связывания атмосферного азота облигатными азотфиксаторами называется симбиотической азотфиксацией. При протокооперации азотфиксирующие микроорганизмы населяют примыкающую к корням часть почвы (ризосферу) и усваивают органические вещества, которые, как в проточном культиваторе, постоянно выделяются корнями. Такая азотфиксация называется ассоциативной. В целом ассоциативная азотфиксация преобладает в естественных экосистемах, симбиотическая – в агроэкосистемах.

Симбиотические микроорганизмы могут жить и в листьях, пример – водный папоротник азолла, распространенный в тропическом поясе. Связанная с азоллой цианобактерия анабена способна за год фиксировать до 1000 кг/га азота (что является бесспорным рекордом, достойным книги Гиннеса). Для сравнения посев клевера в средней полосе способен за год фиксировать до 200 кг/га азота, а люцерны в жарких районах с удлиненным полевым периодом и при поливе – до 700 кг/га (к слову, оптимальная доза внесения азотных удобрений в разных условиях и для разных культур колеблется в пределах 50-200 кг/га; в настоящее время в России в почву в среднем вносится 10 кг/га азотных удобрений в действующем веществе).

Обеспечение новых («мертвых») субстратов азотом является необходимым условием для их зарастания. В теплом климате азот в субстрате накапливается в результате симбиотической азотфиксации: пионерами заселения лавовых потоков, отложений речного аллювия, горных осыпей являются бобовые растения (особенно часто из рода люпин). В более прохладном климате азот поставляется в результате ассоциативной азотфиксации: новые субстраты зарастают злаками и осоками. В самых суровых условиях Севера пионерами оказываются цианобактерии, которые обладают уникальной способностью и к фотосинтезу, и к азотфиксации.

Мутуалистические взаимоотношения с азотфиксаторами, также как и содержание микориз, обходятся растениям очень дорого: на них затрачивается значительное количество продуктов фотосинтеза (около 1/3). Большими затратами органического вещества на симбиотическую азотфиксацию объясняются более низкие урожаи зернобобовых культур по сравнению со злаками.

Тем не менее на биологическую азотфиксацию экологи возлагают большие надежды, она должна во многом заменить техногенную азотфиксацию промышленных предприятий, при которой на производство минеральных азотных удобрений затрачивается очень много энергии. Кроме того, экологически грязным является не только само производство удобрений, но и их использование: при внесении азотных удобрений на поля до 50% их вымывается в окружающую среду, вызывая ее загрязнение (в первую очередь эвтрофикацию водных экосистем, см. 12.7).

Растения и насекомые-опылители. Насекомые, переносящие пыльцу, питаются нектаром или пыльцой. Отмечены случаи участия насекомых в опылении даже таких типично ветроопыляемых растений, как злаки. Насекомые-опылители переносят пыльцу с одного цветка на другой на большие расстояния, чем ветер. Если пыльца деревьев за время, пока рыльцевая поверхность сохраняет способность ее воспринимать, может быть перенесена ветром не более чем на 70 м (у трав – менее 10 м), то за это время шмели переносят пыльцу на расстояние до 3 км. Радиус переноса пыльцы пчелами обычно ограничен 1 км.

Существует два основных направления развития мутуализма растений и насекомых: узкая и широкая специализация (т.е. в направлении облигатного мутуализма и протокооперации). При узкой специализации эволюция ведет к ограничению числа опылителей: происходит усложнение строения цветка (как у бобовых или губоцветных) таким образом, что нектар становится доступным только для насекомых с определенным типом строения (в первую очередь ротового аппарата). Высшее достижение этого варианта эволюции – взаимоотношения опылителей и некоторых представителей орхидных, которые привлекают самцов насекомых-опылителей, имитируя облик и половые феромоны самок.

При широкой специализации спектр опылителей возрастает. Широкий спектр опылителей имеют представители семейства сложноцветных. Этим объясняется их высокая устойчивость в антропогенно нарушенных экосистемах, в которых обеднен состав видов опылителей. По этой причине в современном нарушаемом человеком мире обязательный мутуализм растений и насекомых менее выгоден для обоих партнеров, чем протокооперация.

1 ... 22 23 24 25 26 27 28 29 30 ... 49
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈