Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Прочая научная литература » Алиса в Стране Смекалки - Рэймонд Смаллиан

Алиса в Стране Смекалки - Рэймонд Смаллиан

Читать онлайн Алиса в Стране Смекалки - Рэймонд Смаллиан
1 ... 22 23 24 25 26 27 28 29 30 ... 35
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

11. Продолжение седьмой истории.

Чеширский Кот не мог украсть поваренную книгу по той же причине, что и в предыдущей задаче. Предположим, что поваренную книгу украла Герцогиня. Тогда Чеширский Кот лжет, а кухарка говорит правду, что противоречит условию задачи (если поваренную книгу украла Герцогиня, то двое других обвиняемых либо оба лгут, либо говорят правду). Следовательно, Герцогиня не похищала поваренную книгу. Ее украла кухарка. (Двое других обвиняемых либо оба лгут, либо оба говорят правду — в действительности оба лгут. Все трое — лжецы.)

12. История восьмая.

Прежде всего заметим, что Соня не могла украсть масло (тот, кто украл масло, говорит правду, а Соня на суде показала, что украла молоко). Следовательно, масло украла не Соня. Значит, масло украл либо Мартовский Заяц, либо Болванщик. Если бы масло украл Мартовский Заяц, то его утверждение о том, что масло украл Болванщик, было бы истинным (напомним, что тот, кто украл масло, говорит правду). Но тогда масло должен был бы украсть Болванщик, а это противоречит условиям задачи (масло украл кто-то один из обвиняемых). Значит, масло украл не Мартовский Заяц. Но тогда масло украл Болванщик. Следовательно, его заявление на суде истинно и яйца украла Соня. Значит, Мартовский Заяц украл молоко.

Итак. Мартовский Заяц украл молоко, Болванщик украл масло (и всегда говорит только правду), а Соня украла яйца (и всегда лжет).

13. История девятая и последняя.

Если бы Белый Кролик разбирался получше в логике, то он никогда бы не сказал, что Билль говорит правду, а Валет лжет. поскольку логически невозможно, чтобы Билль говорил правду, а Валет лгал! Иначе говоря, я утверждаю, что если Билль говорит правду, то Валету не остается ничего другого, как говорить правду. Позвольте мне доказать это.

Предположим, что Ящерка Билль говорит правду. Тогда его показания на суде истинны. Значит, либо Мартовский Заяц, либо Соня говорит правду (возможно, что правду говорят оба). Предположим, что правду говорит Мартовский Заяц. Тогда кухарка должна говорить правду (напомним, что, как показал на суде Мартовский Заяц, кухарка и Чеширский Кот говорят правду). С другой стороны, если Соня говорит правду. то кухарка должна опять-таки говорить правду (ибо так утверждала в своих показаниях на суде Соня). Таким образом, и в том и в другом случае (говорит ли правду Мартовский Заяц или Соня) кухарка должна говорить правду. Но либо Мартовский Заяц, либо Соня говорит правду. Следовательно, в любом случае кухарка должна говорить правду. Это доказывает, что кухарка говорит правду (разумеется, в предположении, которое мы разделяем, что Ящерка Билль сказал правду). Кроме того. Мартовский Заяц показал (и это подтвердила кухарка), что Чеширский Кот говорит правду, а Соня показала (и ее слова также подтвердила кухарка), что Гусеница говорит правду. Следовательно, либо Чеширский Кот, либо Гусеница говорит правду (поскольку либо Мартовский Заяц, либо Соня говорит правду: если правду говорит Мартовский Заяц, то не лжет Чеширский Кот; если же правду говорит Соня, то не лжет Гусеница). Но в своих показаниях на суде Болванщик утверждал, что либо Чеширский Кот, либо Гусеница говорит правду, поэтому сам Болванщик говорит правду. Значит, и кухарка, и Болванщик говорят правду. Именно это и утверждал Валет Червей. Таким образом. Валет Червей говорит правду (разумеется, при условии, что Ящерка Билль говорит правду).

Итак, мы доказали, что если Ящерка Билль говорит правду, то Валет Червей не может не говорить только правду. Значит, Белый Кролик лгал, когда утверждал, что Билль говорит правду, а Валет лжет. Итак, Белый Кролик — лжец.

Обратимся теперь к показаниям Алисы (их истинность не вызывает сомнений). Алиса сказала, что Белый Кролик и Герцогиня либо оба говорят правду, либо оба лгут. Говорить правду они оба не могут (так как Белый Кролик лжет). Следовательно, они могут только лгать вдвоем. Но коль скоро Герцогиня лжет, то крендели украл не кто иной, как Грифон.

Глава 3

14. Гусеница и Ящерка Билль.

Гусеница считает, что и она, и Ящерка Билль не в своем уме. Если бы Гусеница была в здравом уме, то мнение о том, что и она, и Ящерка Билль не в своем уме, было бы ложно. Следовательно, Гусеница (будучи в здравом уме) не могла бы придерживаться этого ложного мнения. Значит, Гусеница не в своем уме. Но коль скоро она не в своем уме, то ее представление об окружающих превратно. Следовательно, неверно, что и Гусеница, и Ящерка Билль не в своем уме. Значит, другой партнер (Ящерка Билль) должен быть в здравом рассудке.

Итак, Гусеница не в своем уме, а Ящерка Билль в здравом рассудке.

15. Кухарка и Кот.

Если бы кухарка была не в своем уме, то ее мнение о том, что по крайней мере один из двух — либо она, либо Чеширский Кот — не в своем уме, было бы истинным. Но тогда мы имели бы человека, который, будучи не в своем уме, придерживается здравых суждений, что противоречит условиям задачи. Следовательно, кухарка должна быть в здравом рассудке. А поскольку она в здравом уме, то ее суждения истинны, и поэтому один из двух — либо она, либо Чеширский Кот — не в своем уме. Поскольку этот «один» не кухарка, им должен быть Чеширский Кот.

Итак, кухарка в здравом рассудке, а Чеширский Кот не в своем уме.

16. Лакей-Лещ и Лягушонок.

Приведенные в условиях задачи сведения не позволяют определить, в здравом ли рассудке или не в своем уме Лакей-Лещ, но мы докажем, что Лягушонок должен быть в здравом рассудке. Будем рассуждать следующим образом.

Имеются две возможности: либо Лакей-Лещ в здравом рассудке, либо он не в своем уме. Покажем, что и в том и в другом случае Лягушонок должен быть в здравом рассудке.

Предположим, что Лакей-Лещ в здравом рассудке. Тогда он судит обо всем правильно. Значит, Лягушонок действительно во всем схож с Лакеем-Лещом. Следовательно, Лягушонок в здравом рассудке.

С другой стороны, предположим, что Лакей-Лещ не в своем уме. Тогда он обо всем судит превратно, поэтому Лягушонок совершенно несхож с Лакеем-Лещом. Так как Лакей-Лещ не в своем уме, то Лягушонок в противоположность ему должен быть в здравом рассудке.

Итак, в любом случае (в здравом ли рассудке Лакей-Лещ или не своем уме) Лягушонок должен быть в здравом уме.

А что если бы Лакей-Лещ считал Лягушонка не во всем схожим, а во всем несхожим с собой? Каким был бы тогда Лакей-Лещ — в здравом рассудке или не в своем уме?

Ответ: Лягушонок в таком случае должен был быть не в своем уме. Доказательство этого утверждения я предоставляю читателю в качестве самостоятельного упражнения.

17. Король и Королева Бубен.

Никто из этой августейшей четы не может думать о себе, что он не в своем уме. Действительно, человек в здравом рассудке знает в соответствии с истиной, что он в своем уме, а безумец ошибочно полагает, что он в своем уме. Следовательно, Королева в действительности не думает, что она не в своем уме. Значит, не в своем уме Король, который считает, что Королева так думает.

Данные задачи не позволяют утверждать что-либо относительно того, в своем ли уме Королева Бубен.

18. Мартовский Заяц, Болванщик и Соня.

Предположим, что Болванщик в своем уме. Тогда он обо всем судит здраво. Значит, Мартовский Заяц не думает, что все три участника безумного чаепития в своем уме. Следовательно, Мартовский Заяц должен быть в своем уме потому, что если бы он был не в своем уме, то разделял бы ложное мнение о том, что все три участника безумного чаепития в своем уме. Но тогда, Соня, считающая, что Мартовский Заяц в здравом рассудке, сама должна быть в своем уме. Значит, все три участника безумного чаепития должны быть в своем уме. Как же в таком случае мог Мартовский Заяц не признавать истинным утверждение о том, что все три участника безумного чаепития в своем уме? Полученное противоречие доказывает, что предположение о том, будто Болванщик в своем уме, ложно: в действительности Болванщик должен быть не в своем уме.

Так как Болванщик должен быть не в своем уме, он судит обо всем превратно, и поэтому Мартовский Заяц думает, что все три участника безумного чаепития в здравом рассудке. Разумеется, Мартовский Заяц заблуждается (так как Болванщик не в своем уме), поэтому Мартовский Заяц также не в своем уме. Но тогда и Соня, считающая, что Мартовский Заяц в здравом рассудке, также не в своем уме.

Итак, все трое участников безумного чаепития не в своем уме (что, впрочем, не слишком удивительно!).

19. Грифон, Черепаха Квази и Омар.

Прежде всего Грифон и Черепаха Квази должны быть «одинаковыми», то есть либо оба не в своем уме. либо оба в здравом рассудке, так как Черепаха Квази считает, что Грифон в своем уме. Если Черепаха Квази в здравом рассудке, то это означает, что Грифон в своем уме. Если же Черепаха Квази не в своем уме, то он судит обо всем превратно. Значит, Грифон в действительности не в здравом рассудке, а безумен. Таким образом, Грифон и Черепаха Квази оба не в своем уме.

1 ... 22 23 24 25 26 27 28 29 30 ... 35
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?