Мир завтра. Как технологии изменят жизнь каждого из нас - Стивен Котлер
Шрифт:
Интервал:
Закладка:
По этой причине в 1976 году британская Королевская комиссия по вопросам загрязнения окружающей среды объявила «морально неприемлемым» поддерживать развитие атомной энергетики, не продемонстрировав одновременно возможности безопасного изолирования радиоактивных отходов. С тех пор в настроениях общественности мало что изменилось. Но на самом деле отходов этих совсем не так много, как нам пытаются внушить. «Все отработавшее топливо из энергетических реакторов и других источников, накопившееся в США за 50 лет существования ядерной энергетики, по своему объему так мало, что, если разложить его на торговой площади гипермаркета Walmart, толщина слоя составила бы девять футов, – говорит Кревенс. – Годовой объем отработавшего топлива из одного реактора легко уместится в кузов стандартного грузовика».
Куда же все-таки девать эти отходы? Многие предлагают последовать примеру Франции и отправлять отходы АЭС на переработку. Если в Америке (как и в Швеции, Финляндии, Испании и ЮАР) применяется открытый, или однократный, топливный цикл, то есть сырье используется только раз, то во Франции содержащийся в отработавшем топливе плутоний очищают, окисляют, затем смешивают со свежей порцией урана и полученное МОХ-топливо используют для нового цикла (эту технологию называют PUREX-процессом). Америка в свое время тоже собиралась пойти этим путем, но в 1976 году Индия, используя примерно такую же технологию переработки ядерных отходов, создала ядерное оружие, и многих такая перспектива напугала, в том числе тогдашнего президента США Джимми Картера.
В 1977 году Картер издал распоряжение, согласно которому всякие разработки методов переработки ядерных отходов на территории США должны быть прекращены. Цель его была благая – подать миру пример в борьбе с распространением ядерного оружия, однако мир этому примеру не последовал. Поэтому в 1981 году Рейган снял запрет, но денег на возобновление исследований не выдал. Реально исследования возобновились лишь в 1999 году, когда министерство энергетики, наконец, изменило свою политику и нашло подрядчиков на строительство перерабатывающего завода в Южной Каролине. Когда этот завод откроется, сказать не может никто. И пока это не произошло, 55 тысяч тонн радиоактивных отходов ждут своего часа в специальных хранилищах.
Поскольку PUREX-процесс вызывает беспокойство в связи с возможным распространением ядерного оружия, возможно, такая технология переработки является не самым лучшим решением проблемы отходов. Но дело не только в названной угрозе; дело еще и в низкой эффективности этой технологии. Однократный цикл использует потенциальную энергию уранового топлива лишь на 5 процентов. Последующая переработка плутония позволяет повысить эту цифру до 6 процентов, но все равно получается, что 94 процента потенциальной энергии ядерного топлива остаются невостребованными, а поскольку запасы урана отнюдь не безграничны и добыча урановой руды с экологической точки зрения отнюдь не безупречна, было бы очень неплохо научиться использовать этот потенциал.
И тут в игру вступают новейшие технологии.
5Одним из примеров новейших технологий являются реакторы третьего поколения. Это усовершенствованные легководные реакторы со значительно более надежными системами безопасности. Они имеют модульную структуру, что позволяет изготавливать отдельные модули в заводских цехах, тем самым значительно снижая расходы. В настоящее время два реактора третьего поколения находятся в эксплуатации и еще два строятся. Но настоящий восторг вызывают реакторы следующего, четвертого, поколения.
Обычные ядерные реакторы называют тепловыми, или реакторами на медленных нейтронах, потому что используемые в них нейтроны замедляются для производства тепловой энергии. Это достигается за счет использования замедлителя, обычно воды, отчего эти реакторы называют легководными. Быстрые же реакторы (или реакторы на быстрых нейтронах), которые имеются в виду, когда говорят о реакторах четвертого поколения, замедлителя не имеют, в результате чего нейтроны сталкиваются с ядрами на гораздо большей скорости, что позволяет извлекать из топлива больше энергии.
В реакторах на медленных нейтронах в качестве теплоносителя стали использовать жидкий металл – в основном натрий. Преимущество здесь состоит в том, что в системах с водным охлаждением необходимо поддерживать очень высокое давление, в результате чего даже маленькая утечка может стать большой проблемой. Системы же с жидкометаллическим теплоносителем функционируют при атмосферном давлении и в этом смысле проблем не создают, однако имеют другие недостатки.
Жидкий натрий не отнесешь к числу наиболее стабильных веществ. Чтобы возник пожар, достаточно контакта с воздухом или с водой. Причина, по которой большинство людей никогда не слышали об этой технологии, как раз и заключается в том, что все первые попытки оборачивались пожарами. Расплавившийся в Айдахо EBR-I был экспериментальным быстрым реактором; прототип быстрого реактора на японской АЭС Monju сгорел в 1995 году, проработав лишь нескольких месяцев. Схожая судьба постигла и другие экспериментальные быстрые реакторы. В 2008 году Томас Кохран, физик-ядерщик из Совета по защите природных ресурсов, выступая на слушаниях в палате представителей США по этой технологии, в частности, сказал:
Разработкой реакторов-размножителей на быстрых нейтронах ученые из Соединенных Штатов, Франции, Великобритании, Германии, Италии, Японии и Советского Союза занимаются десятки лет, на это потрачены десятки миллиардов долларов, но все усилия закончились неудачей… Потратив столько времени и столько денег на разработку быстрых реакторов, конгресс вправе задаться вопросом, почему к сегодняшнему дню существует лишь один коммерческий реактор на быстрых нейтронах – лишь один из 440 реакторов, функционирующих на текущий момент во всем мире. Совет по защите природных ресурсов знает ответ на этот вопрос: потому, что они неэкономичны и ненадежны.
Однако это еще не всё. Первоначальная идея ядерщиков состояла в том, чтобы использовать отработавшее топливо из тепловых реакторов для питания быстрых реакторов-размножителей, которые назывались так потому, что создавали больше изотопов плутония, чем потребляли. «Первоначально, – говорит Кревенс, – до открытия залежей урана на Колорадском плато мы всерьез беспокоились о том, что наши запасы быстро иссякнут. “Размножение” плутония отчасти решало эту проблему».
Работы по реализации данного решения начались в 1951 году, когда был создан реактор EBR-I, и продолжились в 1964 году, с реактором EBR-II. «Да, реактор EBR-I частично расплавился, – говорит Дейв Россин, бывший президент Американского общества ядерной энергетики и помощник министра энергетики в администрации Рейгана, – но времена тогда были не те, что ныне. Специалисты изучили причины аварии, внесли коррективы и создали реактор EBR-II, который был запущен в 1964 году и продолжал прекрасно работать еще и в 80-е годы, но, к сожалению, времена тогда изменились, и проект закрыли по политическим мотивам, поскольку само словосочетание “реактор-размножитель” заставляло вашингтонских деятелей хмуриться».
В 1984 году, пытаясь избежать такой участи, ученые из Аргоннской национальной лаборатории переименовали реактор-размножитель в интегральный быстрый реактор. К 1992 году все проектные работы были завершены, но Билл Клинтон решил начать экономить и приказал закрыть все ядерные проекты, которые не казались ему необходимыми. «Это самое настоящее преступление, – говорит бывший физик-ядерщик из Аргоннской национальной лаборатории Джордж Стэнфорд. – Мы были готовы построить реактор, который решал все существовавшие проблемы, связанные с безопасностью, эффективностью, распространением ядерного оружия и ликвидацией радиоактивных отходов. Все идеально работало. Интегральный быстрый реактор действительно решал все проблемы. А его просто положили на полку».
Среди проблем, решаемых интегральным быстрым реактором, вопрос надежности и безопасности занимает не последнее место. При нагревании жидкий металл расширяется. С расширением металла его плотность уменьшается. Это приводит к изменению геометрической траектории нейтронов в реакторе, и цепная реакция становится невозможной в силу законов физики. «Он просто не может расплавиться, – говорит Стэнфорд. – Мы знаем это наверняка, потому что во время публичных демонстраций с использованием EBR-II были в точности воспроизведены обстоятельства, вызвавшие аварии на АЭС Three Mile Island и в Чернобыле, и ничего не случилось». Такой «пассивной безопасностью» обладают все реакторы четвертого поколения.
Еще одна решаемая новыми реакторами проблема – угроза распространения ядерного оружия. Интегральный быстрый реактор построен так, что попавшее внутрь топливо выходит наружу исключительно в форме электроэнергии. То, что располагается внутри (если предположить, что террористы захватят атомную станцию), находится в слишком «горячем» состоянии, поэтому главным результатом попытки извлечь из реактора его содержимое станет гибель самих террористов. А отходов у этого реактора значительно меньше, чем у теплового (если тепловой реактор номинальной мощностью 1000 мегаватт оставляет после себя 25 тонн отработавшего топлива в год, то масса отходов быстрого реактора такой же мощности едва достигает одной тонны). Кроме того, эти отходы не содержат веществ, пригодных для создания атомного оружия, сохраняют радиоактивные свойства лишь несколько сотен лет и имеют форму твердого вещества – нечто вроде стеклянных кирпичей, – поэтому даже при разрушении реактора они не могут проникнуть в грунтовые воды.