3. Излучение. Волны. Кванты - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
(32.4)
Необходимо сделать несколько замечаний по поводу этого выражения. Прежде всего, поскольку а' есть вектор, то а'2 в формуле (32.5) означает а'·а', т. е. квадрат длины вектора. Во-вторых, в формулу (32.2) для потока входит ускорение, взятое с учетом запаздывания, т. е. ускорение в тот момент времени, когда была излучена энергия, проходящая сейчас через поверхность сферы. Может возникнуть мысль, что энергия действительно была излучена точно в указанный момент времени. Но это не совсем правильно. Момент излучения нельзя определить точно. Можно вычислить результат только такого движения, например колебания и т. п., где ускорение в конце концов исчезает. Следовательно, мы можем найти только полный поток энергии за весь период колебаний, пропорциональный среднему за период квадрату ускорения. Поэтому а'2 в (32.5) должно означать среднее по времени от квадрата ускорения. Для такого движения, когда ускорение в начале и в конце обращается в нуль, полная излученная энергия равна интегралу по времени от выражения (32.5).
Посмотрим, что дает формула (32.5) для осциллирующей системы, для которой ускорение а' имеет вид w2x0еiwt. Среднее за период от квадрата ускорения равно (при возведении
в квадрат надо помнить, что на самом деле вместо экспоненты должна входить ее действительная часть — косинус, а среднее от cos2wt дает l/2):
(32.6)
Эти формулы были получены сравнительно недавно — в начале XX века. Это замечательные формулы, они имели огромное историческое значение, и о них стоило бы почитать в старых книгах по физике. Правда, там использовалась другая система единиц, а не система СИ. Однако в конечных результатах, относящихся к электронам, эти осложнения можно исключить с помощью следующего правила соответствия: величина q2e/4pe0, где qе — заряд электрона (в кулонах), раньше записывалась как е2. Легко убедиться, что в системе СИ значение е численно равно 1,5188·10-14, поскольку мы знаем, что
qe= 1,60206·10-19 и 1/4pe0= 8,98748·109. В дальнейшем мы будем часто пользоваться удобным обозначением
(32.7)
Если это численное значение e подставить в старые формулы, то все остальные величины в них можно считать определенными в системе СИ. Например, формула (32.5) прежде имела вид Р = 2/3е2а2/с3. А потенциальная энергия протона и электрона на расстоянии r есть q2e/4pe0r или е2/r, где е=1,5188-10-14 ед. СИ.
§ 3. Радиационное затухание
Заряд, закрепленный на пружине с собственной частотой w0 (или электрон в атоме), даже в абсолютно пустом пространстве не сможет колебаться бесконечно долго, поскольку, колеблясь, он теряет энергию на излучение. Никаких сил сопротивления в обычном смысле этого слова, никакой вязкости здесь нет. Но колебания не будут происходить «вечно», вследствие излучения они будут медленно замирать. А насколько медленно? Определим для осциллятора величину Q, вызванную так называемым радиационным сопротивлением или радиационным затуханием. Для любой колеблющейся системы величина Q равна энергии системы в данный момент времени, деленной на потери энергии, отнесенные к 1 рад:
Если Q задано, то легко получить закон спадания энергии колебаний: dW/dt = (-w/Q)W, откуда следует W =W0e-wt/Q; здесь W0 — начальная энергия (при t = 0).
Чтобы найти Q для излучающего осциллятора, вернемся к формуле (32.8) и подставим вместо dW/dt выражение (32.6).
А что нужно взять в качестве энергии W осциллятора? Кинетическая энергия осциллятора равна 1/2mv2, а средняя кинетическая энергия равна mш2x20/4. Но мы помним, что полная энергия осциллятора равна средней кинетической плюс средняя потенциальная, причем обе они для осциллятора равны; поэтому полная энергия равна
(32.9)
Какую частоту следует подставить в наши формулы? Мы возьмем собственную частоту w0, потому что практически это и есть частота излучения атома, а вместо m подставим me . После ряда сокращений эта формула приводится к виду
(32.10)
(Для большей ясности и из соображений близости к исторически принятой форме мы ввели величину е2 = q2e/4pe0 и записали 2p/l вместо w0/с.) Поскольку величина Q безразмерна, множитель е2/mес2, зависящий только от массы и заряда электрона и выражающий его внутренние свойства, обязан иметь размерность длины. Он был назван классическим радиусом электрона, потому что в старых моделях электрона радиационное сопротивление пытались объяснить действием одной части электрона на другие его части, для чего размеры электрона приходилось выбирать порядка e2/mec2. Но эта величина потеряла свой прежний смысл, и никто теперь не считает, что электрон имеет такой
радиус. Численное значение классического радиуса электрона следующее:
(32.11)
Вычислим теперь значение Q для атома, излучающего видимый свет, например для атома натрия. Длина волны излучения натрия равна примерно 6000 Е и находится в желтой части спектра; эта величина довольно типична. Отсюда
(32.12)
т. е. для атомов Q порядка 108. Это значит, что атомный осциллятор колеблется 108 рад, или примерно 107 периодов, прежде чем его энергия уменьшится в 1/е раз. Частота колебаний света v = с/l при длине волны 6000 Е составляет 1015 гц, а, следовательно, время жизни, т. е. время, за которое энергия уменьшится в Не раз, есть величина порядка 10-8сек.
Примерно за такое же время высвечиваются свободные атомы в обычных условиях. Проведенная оценка справедлива только для атомов в пустом пространстве, не подверженных никаким внешним воздействиям. Если электрон находится в твердом теле, он сталкивается с другими атомами и электронами, и тогда возникает добавочное сопротивление и затухание будет другим.
Величина эффективного сопротивления у, определяющая сопротивление осциллятора, может быть найдена из соотношения 1/Q=g/wo; вспомним, что именно y определяет ширину резонансной кривой (см. фиг. 23.2) . Итак, мы вычислили ширины спектральных линий для свободно излучающих атомов! Из равенства l=2pc/w получаем
§ 4. Независимые источники
Прежде чем перейти ко второй теме этой главы — рассеянию света, обсудим частный случай явления интерференции, который мы до сих пор не рассматривали. Речь пойдет о таком случае, когда интерференция не возникает. Пусть имеются два источника S1 и S2 с амплитудами поля a1 и A2 . Излучение регистрируется в некоторой точке, в которую оба луча приходят с фазами j1 и j2 (фазы зависят от истинного момента излучения и времени запаздывания, являющегося функцией точки наблюдения).
Наблюдаемая интенсивность излучения получается сложением двух комплексных векторов с модулями a1 и A2 и фазами j1 и j2 (как в гл. 30) и возведением в квадрат; таким образом, энергия пропорциональна
Если бы не было перекрестного члена 2A1A2cos(j1-j2), полная энергия в данном направлении была бы равна сумме энергий A12+A22; излучаемых по отдельности каждым источником, что соответствует нашим обычным представлениям. Иначе говоря, интенсивность света, падающего на предмет от двух источников, совпала бы с суммой интенсивностей обоих источников. С другой стороны, если оставить перекрестный член, суммы интенсивностей не получится, потому что возникнет интерференция. В тех случаях, когда перекрестный член роли не играет, интерференция, казалось бы, отсутствует. Фактически же она возникает всегда, но подчас ее не удается наблюдать.
Приведем несколько примеров. Пусть два источника находятся друг от друга на расстоянии 7 000 000 000 длин волн, что, в общем, вполне осуществимо. Тогда в некотором фиксированном направлении разность фаз принимает вполне определенное значение. Но если сдвинуться от этого направления хоть на волосок, скажем на несколько длин волн (совсем пустячное расстояние: зрачок нашего глаза настолько велик, что действие лучей можно усреднять на расстояниях, много больших длины волны), то разность фаз станет другой и значение косинуса резко изменится. При вычислении средней интенсивности в маленькой области пространства косинус в точках этой области будет все время колебаться — плюс, минус, плюс, минус — и при усреднении даст нуль.