Категории
Самые читаемые
ChitatKnigi.com » 🟠Детская литература » Детская образовательная литература » В поисках похищенной марки - Владимир Левшин

В поисках похищенной марки - Владимир Левшин

Читать онлайн В поисках похищенной марки - Владимир Левшин
1 ... 20 21 22 23 24 25 26 27 28 ... 34
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

— Двухтысячный, — машинально продолжал Нулик.

— Нет, нет! Только не двухтысячный. Этот год остаётся високосным.

— Но почему же? — озадаченно спросил Нулик.

— Лилио высчитал, что за 400 лет накапливается только три дня разности. Поэтому все годы, номера которых делятся без остатка на 400, можно сохранить високосными…

— Если так, расхождение и вправду сильно уменьшилось.

— Набегает всего-навсего один денёк за три с лишним тысячи лет.

— Ну, это не в счёт! Только вот что… Отчего это в шестнадцатом веке расхождение было на 10 дней, а в восемнадцатом — только на 11? Ведь должно было вроде стать на 12?

— Так я же это только что объяснил! В шестнадцатом веке прибавили 10 дней. Потом наступил последний год этого века, 1600-й, а число 1600 делится на 400. Стало быть, этот год и по юлианскому и по григорианскому календарям високосный. И там и тут к нему прибавляется по одному дню, и, значит, в семнадцатом столетии дальнейшего расхождения между двумя календарными стилями не произошло. То же самое будет и в двухтысячном году. Выходит, не видать и XXI веку четырнадцатого дня как своих ушей.

— Или как нам кино, если мы не поторопимся, — ввернул президент. — Так что перейдём к падению Магистра с верхушки баобаба.

— Стремительно он приземлился! — сказал Сева. — Только, конечно, Кулон тут ни при чём. Мы ведь уже знаем, что закон всемирного тяготения, по которому падал Магистр на землю, открыт вовсе не Кулоном, а Ньютоном. Это самые обычные Магистровы штучки…

— Ну, эту штучку я бы ему, пожалуй, простил, — сказал Олег. — Тут и в самом деле можно кое-что спутать, особенно человеку рассеянному.

— И я бы простил, — сейчас же согласился Нулик. — Больно уж похожи имена этих учёных! Кулон — Ньютон… Прямо рифма!

— Не в том дело, — возразил Олег. — Схожи не только имена учёных, но и открытые ими законы.

Нулик тихонько свистнул.

— Вот оно что! А кто из них открыл свой закон раньше?

— Конечно, Ньютон. Ведь он жил в семнадцатом веке, а Кулон — в восемнадцатом во Франции.

Нулик густо покраснел.

— Неужели?.. Нет, не может быть! Неужели Кулон у Ньютона… это самое.

— Нет, нет! — поспешно сказал я. — Просто закон Ньютона и закон Кулона выражаются одной и той же формулой, хоть речь в них идёт о явлениях разных. По закону всемирного тяготения, открытому Ньютоном, все, абсолютно все тела во Вселенной друг к другу притягиваются. И сила их взаимного притяжения тем больше, чем массивнее сами тела. Естественно, что чем дальше тела друг от друга, тем сила притяжения меньше. Увеличим расстояние между телами вдвое — сила притяжения уменьшится в четыре раза; увеличим расстояние втрое — притяжение станет меньше в девять раз; увеличим вчетверо — меньше в шестнадцать раз…

— В общем, в квадрат раз, — подсказал президент.

— Вот именно, в квадрат раз. Что же до Кулона, то его закон имеет отношение не только к притяжению, но и к отталкиванию.

— Дело житейское, — философски изрёк Нулик. — Явления прямо противоположные, а формула одна…

— Отлично сказано, дорогой. Кулон, как известно, изучал свойства электрических зарядов. А электрические заряды бывают положительные и отрицательные, то есть со знаком плюс и со знаком минус. Заряды с одинаковыми знаками отталкиваются, а с разными — притягиваются. Так вот, Кулон установил, что и силу притяжения, и силу отталкивания двух электрических зарядов можно вычислить все по той же ньютоновой формуле закона всемирного тяготения…

Нулик встал, подошёл ко мне и торжественно потряс мою руку:

— Спасибо! Огромное вам спасибо.

— Но за что же? — удивился я.

Президент замялся.

— Как вам сказать… Ну, мне очень не хотелось, чтобы Кулон что-то там стянул у Ньютона. И я страсть как обрадовался, когда оказалось, что он человек честный.

— Рад, что доставил тебе удовольствие. А теперь не пора ли нам двинуться дальше?

— С вашего позволения, дальше идёт «десятое небо», — сказал Сева. — По словам Магистра, выражение это часто употребляют современные учёные.

— Десятое небо… Наверное, это что-то про астрономию? — предположил Нулик.

— Если и про астрономию, то, во всяком случае, не научную и не современную, — заверил Сева.

— Объясняй! — вздохнул президент, украдкой покосившись на часы.

— В древности, — начал Сева, — известны были такие планеты: Меркурий, Венера, Марс, Юпитер и Сатурн. Солнце и Луна тоже причислялись тогда к планетам. Всего, стало быть, по тем временам планет было семь. А устройство мироздания тогда представляли себе так. В центре Вселенной помещается неподвижная твердь — Земля. Вокруг Земли обращаются планеты. Каждая планета укреплена на своей собственной сфере (или на своём небе) и обращается вокруг Земли вместе с ним. Первое небо — небо Луны, за ним идёт небо Меркурия. Следующее, третье небо принадлежит Венере. За ним следуют небеса Солнца, Марса, Юпитера и Сатурна. Небо Сатурна было седьмым и последним планетным небом.

Нулик критически хмыкнул.

— А куда звезды девались? Ведь их небось малость побольше семи!

— Не беспокойся. Нашлось место и для них. Между прочим, в отличие от планет, все другие небесные тела назывались неподвижными звёздами. Так вот, по мнению древних астрономов, все неподвижные звезды были прикреплены к одному, восьмому небу и тоже обращались с ним вместе вокруг Земли.

Президент беспокойно заёрзал на стуле.

— Так. Больше вроде прикреплять нечего. Выходит, восьмое небо самое последнее…

— Это он намекает на то, что нас интересует не восьмое небо, а десятое, — разъяснила Таня.

— Погодите, будет вам и десятое, — сказал Сева, — только не вдруг. Сперва заедем по дороге на девятое.

— Так бы сразу и говорил! — успокоился Нулик. — Было, значит, и девятое и десятое! Только что же на них помещалось?

— На девятом небе находились механизмы, которые приводили в движение восемь других небесных сфер.

— А на десятом?

— А ты подумай. Если на девятом — механизмы, так на десятом…

— …механики! — радостно засмеялся Нулик. — Небесные механики!

— Или попросту боги, — закончил Сева. — Блаженные, как их ещё называли. И вот почему пребывать на десятом небе значит достигнуть высшего блаженства.

— Все это так, — сказала Таня, — но чаще всё-таки говорят «на седьмом небе», а не на десятом. «Он на седьмом небе от счастья»…

— В каком-то смысле седьмое небо тоже наивысшее, — возразил Сева. — Ведь это последнее планетное небо!

— Седьмое, десятое — какая разница! — примиряюще сказал президент. — Сейчас-то все равно по-другому.

— Это ты дело говоришь! — похвалила Таня. — В наши дни пришлось бы этих блаженных переселять с десятого этажа на тринадцатый. Ведь, помимо прежних планет, сейчас известны ещё три: Уран, Нептун, Плутон…

— Да и вообще, с точки зрения современной астрономии, Вселенная устроена совсем иначе, — заключил Сева. — А посему спускаемся с небес на землю и переходим к паролю, который придумал хитрец Джерамини.

— На всякого хитреца довольно простоты, — съязвила Таня. — Пароль придумал, а проверить, так ли уж трудно его расшифровать, не догадался.

— Откуда ему было знать, что хозяин кафе подслушает его разговор с девочкой и все расскажет Магистру? — возразил Сева.

— А что он такого рассказал? — в свою очередь, спросил президент. — Ведь Джерамини так и не сообщил, какие именно числа были на каждой половинке ассигнации.

Таня загадочно уставилась в потолок.

— Джерамини не сообщил, а Единичка их всё-таки отгадала…

— Хочешь сказать, что ты тоже? — подмигнул Нулик,

— Представь себе, тоже.

— Что ж молчишь-то?! Давай выкладывай!

— А я и не молчу вовсе. Задумаем какое-нибудь четырехзначное число. Ну хоть 1625. Допустим, что это номер серии той ассигнации, которую Джерамини разрезал пополам. Когда он её разрезал, на одной половинке осталось число 16, на другой — 25. Предположим, что половинку с числом 16 Джерамини отдал…

— …одноглазому Аргусу, — подсказал Нулик.

— Аргус — и вдруг одноглазый! — прыснула Таня. — Ерунда какая-то. Одноглазыми в греческой мифологии были великаны цикло́пы. Один из них, Полифе́м, чуть не погубил Одиссе́я. А у Аргуса было много глаз — не только на лице, но, кажется, даже на затылке. Потому-то и считался он незаменимым сторожем. Ну, это я к слову… Так вот, половинка с числом 16 находится у одноглазого, а число 25 осталось на той половинке, что Джерамини отдал девочке.

— Вот что, — неожиданно решил Нулик, — хватит нам плутать вокруг да около. Проделаем с числом 1625 все, что велел Джерамини. Сперва вычтем из него 25, получим 1600. Из 1600 вычтем 16. Это 1584. Остаётся разделить 1584 на 99. А это будет… это будет 16. Вот так штука! Да ведь это то самое число, которое осталось на половинке ассигнации у одноглазого! Уж не нарочно ли ты подгадала номер колумба?

1 ... 20 21 22 23 24 25 26 27 28 ... 34
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?