Магия чисел. Ментальные вычисления в уме и другие математические фокусы - Майкл Шермер
Шрифт:
Интервал:
Закладка:
Затем работаем в обычном режиме, перемножив 3000 х 2506 = 7 518 000; преобразуем 518 в слова[17] light off и произносим вслух первую часть ответа: «Семь миллионов…». Здесь это можно утверждать, так как 518 меньше 750, поэтому переноса единицы не будет.
Далее прибавляем квадрат числа 247. Не забудьте, что 247 можно быстро получить как дополнение для 753. Затем переходим к окончательному ответу, как это сделано в предыдущем примере.
УПРАЖНЕНИЕ: КВАДРАТЫ ЧЕТЫРЕХЗНАЧНЫХ ЧИСЕЛ
1. 12342 2. 86392 3. 53122
4. 98632 5. 36182 6. 29712
УМНОЖЕНИЕ «3 НА 2»В ходе решения задач типа «2 на 2» мы уже убедились в существовании нескольких путей решения одного и того же примера. Многообразие методов увеличивается параллельно росту количества цифр в задаче. В случае задач «3 на 2» я предпочитаю «предварительный просмотр» для определения самого оптимального метода расчета.
Методы разложения
Самые легкие задачи типа «3 на 2» — те, в которых двузначные числа можно разложить на сомножители. Например:
Потрясающе, что здесь не нужно ничего складывать. Вы просто представляете 56 как 8 х 7, затем решаете пример на умножение типа «3 на 1» (637 х 8 = 5096) и, наконец, пример типа «4 на 1» (5096 х 7 = 35 672). Больше не требуется никаких дополнительных действий, и необходимости запоминать промежуточные результаты тоже нет.
Свыше половины всех двузначных чисел раскладываются на сомножители, среди которых число 11 и меньшие числа. Поэтому данный метод подойдет для многих задач. Вот пример:
Чтобы умножить 853 х 11, представьте 853 в виде 850 + 3 и далее рассуждайте так:
Теперь умножим 9383 х 4, представив 9383 как 9300 + 83, следующим образом:
Если двузначное число не раскладывается на сомножители (или они большие), рассмотрите возможность разложения трехзначного числа.
Обратите внимание, что последовательность умножений выстроилась из задач типа «2 на 1», «3 на 1» и, наконец, «4 на 1».
Это те задачи, которые вы уже умеете решать с легкостью. Поэтому тип примеров «3 на 2» не должен оказаться сложным для вас.
Еще один пример, где не двузначное число подвергается разложению, а трехзначное.
Здесь последовательность задач типа «2 на 2», «3 на 1» и «4 на 1». Но если трехзначное число имеет множитель 11, можно использовать метод умножения на 11 (как описано в главе 4) и получить простой пример типа «2 на 2» (53 х 11 = 583). В данном случае нахождение сомножителя 11 у числа 462 оправдывает себя.
Если двузначное число не раскладывается на «хорошие» сомножители, а трехзначное раскладывается только на сомножители в виде «2 на 1», с задачей все еще можно легко справиться путем умножения типа «2 на 2», а затем «4 на 1», как показано в следующем примере:
Здесь необходимо учесть, что 423 делится на 9 и исходная задача преобразуется в 83 х 47 х 9. В данном случае пример «2 на 2» не настолько прост, но если представить 83 в виде 80 + 3, получится следующее:
Теперь решаем задачу типа «4 на 1» в виде 3901 х 9 для получения итогового ответа 35 109.
Метод сложения
Когда двух- и трехзначное числа в задаче типа «3 на 2» не поддаются простому разложению, можно прибегнуть к методу сложения.
Данный метод предполагает суммирование ответов задач на умножение типа «2 на 2» и «2 на 1». Такого рода задачи включают в себя более сложные элементы (нежели те, которые имеют место в методе разложения), поскольку при решении примера «2 на 1» приходится держать в уме пятизначное число, а затем складывать результаты. Возможно, проще решить эту задачу путем разложения 721 на 103 х 7 и последующего вычисления 37 х 103 х 7 = 3811 х 7 = 26 677.
Вот другой пример:
Хотя обычно при использовании метода сложения на слагаемые разбивается трехзначное число, порой разбиение двузначного числа более удобно, в особенности если его последние цифры равны 1 или 2, как в следующем примере.
Это превращает задачу «3 на 2» в «3 на 1», делая ее абсолютно легкой, так как второе действие представляет собой умножение на 1. Заметьте, кстати, 5 здесь умножается на четное число, что дает дополнительный 0 в ответе. Поэтому в задаче на сложение надо суммировать только две цифры.
Другой пример умножения 5 на четное число показан в следующей задаче:
При умножении 6 (из 60) на 5 (из числа 835) появляется дополнительный 0 в ответе, что максимально упрощает задачу на сложение.
Метод вычитания
Как и в задачах на умножение типа «2 на 2», иногда проще решить задачу «3 на 2» путем вычитания вместо сложения, как в следующих примерах.
Чтобы сравнить методы вычитания и сложения, применим метод сложения к задаче, которая показана выше.
Мое предпочтение при ее решении — использование метода вычитания, потому что я всегда стараюсь оставить максимально легкую задачу на сложение или вычитание на самый конец. В данном случае я бы лучше вычел 86, чем прибавил 344, даже притом, что решить задачу типа «2 на 2» (см. выше) методом вычитания немного сложнее, чем методом сложения.
Метод вычитания тоже можно применять для трехзначных чисел, которые меньше кратного 100 или близки к кратному 1000, как в следующих двух примерах.
Последние три цифры ответа получены путем использования дополнения для числа 816.
В следующем примере мы умножили на двузначное число с помощью метода вычитания. Обратите внимание, как мы отняли 736 путем вычитания 1000 и обратного прибавления дополнения:
УПРАЖНЕНИЕ: УМНОЖЕНИЕ «3 НА 2»
С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ РАЗЛОЖЕНИЯ, СЛОЖЕНИЯ И ВЫЧИТАНИЯ
Решите представленные ниже задачи типа «3 на 2» с использованием методов разложения, сложения или вычитания.
Разложение, если оно возможно, обычно облегчает задачу. Сверьтесь с ответами в конце книги.
Следующие примеры типа «3 на 2» появятся в разделах по возведению в квадрат пятизначных чисел и умножению типа «5 на 5».
ВОЗВЕДЕНИЕ В КВАДРАТ ПЯТИЗНАЧНЫХ ЧИСЕЛОсвоение задач на умножение типа «3 на 2» требует значительно больше практики, но как только вы освоитесь с ними, можете сразу переходить к задачам по возведению пятизначных чисел в квадрат, потому что они упрощаются до умножения типа «3 на 2» плюс возведение в квадрат двух- и трехзначных чисел. Например, чтобы возвести в квадрат число 46 792, можно выполнить следующие действия:
Используя распределительный закон, разделим задачу на такие операции:
46 000 х 46 000 + 2(46 000)(792) + 792 х 792.
Последнее выражение нужно немного упростить:
462 х 1 миллион + (46)(792)(2000) + 7922.
Но я не решаю подобные задачи в последовательном порядке, а начинаю с середины, потому что задача типа «3 на 2» труднее, чем возведение в квадрат двух- и трехзначных чисел.
Итак, в соответствии с принципом «в первую очередь со своего пути убирай сложное», я вычисляю 792 х 46 х 2 и добавляю три нуля в конец результата, то есть выполню следующие действия:
Используя метод вычитания, как показано выше, вычисляем 792 х 46 = 36 432, затем удваиваем результат для получения 72 864. Применение фонетического кода к числу 864 позволяет хранить его в памяти как 72 Fisher.
Следующий шаг: подсчитываем 462 х 1 000 000, что равно 2 116 000 000.
На этом этапе вы можете произнести: «Два миллиарда…».
Активизировав в памяти 72 Fisher, прибавляем к этому числу 116 миллионов, чтобы получить 188 миллионов. Но прежде чем озвучить количество миллионов, нужно проверить, следует ли переносить единицу в старший разряд при сложении Fisher, то есть числа 864 и 7922. Здесь на самом деле не надо вычислять 7922; достаточно определить, что результат вычисления 7922 будет довольно большой, чтобы в сумме с 864 000 превысить 1 миллион. (Вы можете предположить это исходя из того, что 8002 = 640 000, и это число в сумме с 864 000 явно превысит 1 миллион.) Таким образом, к 188 надо прибавить единицу и сказать: «…189 миллионов…».
Все еще держа в памяти слово Fisher, посчитайте квадрат числа 792, используя метод возведения трехзначных чисел в квадрат (округление в большую и меньшую стороны на 8 и т. д.), чтобы получить 627 264. Наконец, прибавьте 627 к Fisher, то есть к числу 864, и получите 1491. Так как мы уже сделали перенос единицы в разряд миллионов, отбросьте первую 1 у числа 1491 и произнесите: «…491 тысяча 264».