Язык программирования Си. Издание 3-е, исправленное - Брайан Керниган
Шрифт:
Интервал:
Закладка:
#include ‹ctype.h›
int getch(void);
void ungetch(int);
/* getop: получает следующий оператор или операнд */
int getop(char s[])
{
int i, с;
while ((s[0] = с = getch()) == ' ' || с == 't')
;
s[1] = ' ;
if (!isdigit(c) && с!= '.')
return c; /* не число */
i = 0;
if (isdigit(c)) /* накапливаем целую часть */
while (isdigit(s[++i] - с = getch()))
;
if (с == '.') /* накапливаем дробную часть */
while (isdigit(s[++i] = с = getch()))
;
s[i] = ' ';
if (c != EOF)
ungetch(c);
return NUMBER;
}
Как работают функции getch и ungetch? Во многих случаях программа не может "сообразить", прочла ли она все, что требуется, пока не прочтет лишнего. Так, накопление числа производится до тех пор, пока не встретится символ, отличный от цифры. Но это означает, что программа прочла на один символ больше, чем нужно, и последний символ нельзя включать в число.
Эту проблему можно было бы решить при наличии обратной чтению операции "положить-назад", с помощью которой можно было бы вернуть ненужный символ. Тогда каждый раз, когда программа считает на один символ больше, чем требуется, эта операция возвращала бы его вводу, и остальная часть программы могла бы вести себя так, будто этот символ вовсе и не читался. К счастью, описанный механизм обратной посылки символа легко моделируется с помощью пары согласованных друг с другом функций, из которых getch поставляет очередной символ из ввода, a ungetch отправляет символ назад во входной поток, так что при следующем обращении к getch мы вновь его получим.
Нетрудно догадаться, как они работают вместе. Функция ungetch запоминает посылаемый назад символ в некотором буфере, представляющем собой массив символов, доступный для обеих этих функций; getch читает из буфера, если там что-то есть, или обращается к getchar, если буфер пустой. Следует предусмотреть индекс, указывающий на положение текущего символа в буфере.
Так как функции getch и ungetch совместно используют буфер и индекс, значения последних должны между вызовами сохраняться. Поэтому буфер и индекс должны быть внешними по отношению к этим программам, и мы можем записать getch, ungetch и общие для них переменные в следующем виде:
#define BUFSIZE 100
char buf[BUFSIZE]; /* буфер для ungetch */
int bufp = 0; /* след. свободная позиция в буфере */
int getch(void) /* взять (возможно возвращенный) символ */
{
return (bufp › 0) ? buf[--bufp]: getchar();
}
void ungetch(int c) /* вернуть символ на ввод */
{
if (bufp ›= BUFSIZE)
printf("ungetch: слишком много символовn");
else
buf[bufp++] = с;
}
Стандартная библиотека включает функцию ungetc, обеспечивающую возврат одного символа (см. главу 7). Мы же, чтобы проиллюстрировать более общий подход, для запоминания возвращаемых символов использовали массив.
Упражнение 4.3. Исходя из предложенной нами схемы, дополните программу- калькулятор таким образом, чтобы она "понимала" оператор получения остатка от деления (%) и отрицательные числа.
Упражнение 4.4. Добавьте команды, с помощью которых можно было бы печатать верхний элемент стека (с сохранением его в стеке), дублировать его в стеке, менять местами два верхних элемента стека. Введите команду очистки стека.
Упражнение 4.5. Предусмотрите возможность использования в программе библиотечных функций sin, ехр и pow. См. библиотеку ‹math.h› в приложении B (параграф 4).
Упражнение 4.6. Введите команды для работы с переменными (легко обеспечить до 26 переменных, каждая из которых имеет имя, представленное одной буквой латинского алфавита). Добавьте переменную, предназначенную для хранения самого последнего из напечатанных значений.
Упражнение 4.7. Напишите программу ungets(s), возвращающую строку s во входной поток. Должна ли ungets "знать" что-либо о переменных buf и bufp, или ей достаточно пользоваться только функцией ungetch?
Упражнение 4.8. Предположим, что число символов, возвращаемых назад, не превышает 1. Модифицируйте с учетом этого факта функции getch и ungetch.
Упражнение 4.9. В наших функциях не предусмотрена возможность возврата EOF. Подумайте, что надо сделать, чтобы можно было возвращать EOF, и скорректируйте соответственно программу.
Упражнение 4.10. В основу программы калькулятора можно положить применение функции getline, которая читает целиком строку; при этом отпадает необходимость в getch и ungetch. Напишите программу, реализующую этот подход.
4.4 Области видимости
Функции и внешние переменные, из которых состоит Си-программа, каждый раз компилировать все вместе нет никакой необходимости. Исходный текст можно хранить в нескольких файлах. Ранее скомпилированные программы можно загружать из библиотек. В связи с этим возникают следующие вопросы:
• Как писать объявления, чтобы на протяжении компиляции используемые переменные были должным образом объявлены?
• В каком порядке располагать объявления, чтобы во время загрузки все части программы оказались связаны нужным образом?
• Как организовать объявления, чтобы они имели лишь одну копию?
• Как инициализировать внешние переменные?
Начнем с того, что разобьем программу-калькулятор на несколько файлов. Конечно, эта программа слишком мала, чтобы ее стоило разбивать на файлы, однако разбиение нашей программы позволит продемонстрировать проблемы, возникающие в больших программах.
Областью видимости имени считается часть программы, в которой это имя можно использовать. Для автоматических переменных, объявленных в начале функции, областью видимости является функция, в которой они объявлены. Локальные переменные разных функций, имеющие, однако, одинаковые имена, никак не связаны друг с другом. То же утверждение справедливо и в отношении параметров функции, которые фактически являются локальными переменными.
Область действия внешней переменной или функции простирается от точки программы, где она объявлена, до конца файла, подлежащего компиляции. Например, если main, sp, val, push и pop определены в одном файле в указанном порядке, т. е.
main() {…}
int sp = 0;
double val[MAXVAL];
void push(double f) {…}
double pop(void) {…}
то к переменным sp и val можно адресоваться из push и pop просто по их именам; никаких дополнительных объявлений для этого не требуется. Заметим, что в main эти имена не видимы так же, как и сами push и pop.
Однако, если на внешнюю переменную нужно сослаться до того, как она определена, или если она определена в другом файле, то ее объявление должно быть помечено словом extern.
Важно отличать объявление внешней переменной от ее определения. Объявление объявляет свойства переменной (прежде всего ее тип), а определение, кроме того, приводит к выделению для нее памяти. Если строки
int sp;
double val[MAXVAL];
расположены вне всех функций, то они определяют внешние переменные sp и val, т. e. отводят для них память, и, кроме того, служат объявлениями для остальной части исходного файла. А вот строки
extern int sp;
extern double val[];
объявляют для оставшейся части файла, что sp - переменная типа int, а val - массив типа double (размер которого определен где-то в другом месте); при этом ни переменная, ни массив не создаются, и память им не отводится.
На всю совокупность файлов, из которых состоит исходная программа, для каждой внешней переменной должно быть одно-единственное определение; другие файлы, чтобы получить доступ к внешней переменной, должны иметь в себе объявление extern. (Впрочем, объявление extern можно поместить и в файл, в котором содержится определение.) В определениях массивов необходимо указывать их размеры, что в объявлениях extern не обязательно. Инициализировать внешнюю переменную можно только в определении. Хотя вряд ли стоит организовывать нашу программу таким образом, но мы определим push и pop в одном файле, а val и sp - в другом, где их и инициализируем. При этом для установления связей понадобятся такие определения и объявления:
В файле 1:
extern int sp;