Моделирование рассуждений. Опыт анализа мыслительных актов - Дмитрий Поспелов
Шрифт:
Интервал:
Закладка:
Пусть мы вдруг оказались в стране, где до этого нам не приходилось бывать. Выйдя из гостиницы, мы увидели, что у подъезда стоит такси, выкрашенное в ярко-желтый цвет. Через некоторое время рядом останавливается еще одно такси такого же цвета. В нашей голове возникает положительная гипотеза вида «В этой стране, если автомобиль выполняет роль такси, то цвет его будет желтым». Оценка достоверности этой гипотезы при двух наблюдениях будет невелика. Но если во время прогулки по улицам города мы увидим, что такси окрашены в тот же желтый цвет, то оценка выдвинутой при выходе из гостиницы гипотезы будет все время возрастать. Станет ли она когда-нибудь равной единице? Если после недельного пребывания в стране наша гипотеза будет подтверждаться лишь положительными примерами, то на родине, рассказывая знакомым и друзьям о своих впечатлениях, связанных с поездкой, мы вполне можем заявить: «А такси у них покрашены в ярко-желтый цвет, что очень удобно – сразу можно найти его, когда нужно». Значит ли это, что гипотеза о цвете такси приобрела оценку достоверности, равную 1?
Можно ввести два типа истинности: эмпирическую истину и теоретическую истину. В нашем примере высказыванию о цвете такси мы, конечно, приписываем эмпирическую истину. Просто все наши наблюдения были в пользу данной гипотезы. Но мы вполне можем допустить, что есть небольшое количество такси иного цвета. Они ни разу не попадались нам на глаза. Совсем другое положение будет в том случае, когда в путеводителе, обнаруженном в гостинице, будет сказано, что закон данной страны запрещает окрашивать такси в какие-либо другие цвета, кроме желтого. При такой информации высказывание о желтом цвете такси будет оценено как теоретическая истина.
На этом простом примере видна разница между дедуктивным и индуктивным умозаключением. При использовании информации из путеводителя о цвете такси вы уже не нуждаетесь в эксперименте. Полученное знание носит общий характер. В каждом конкретном случае (например, при поиске такси) его можно механически применять, фиксируя цвета проходящих машин. Никакого нового знания при решении конкретных задач, связанного с цветом такси, получить нельзя. При получении же информации из наблюдений формируется новое знание, которого раньше не было. Гипотеза о цвете такси в данной стране – это новая информация. Таким образом, индуктивное рассуждение способно порождать новые знания. В этом смысле оно куда более «интеллектуально», чем дедуктивное рассуждение.
Достижение эмпирической истины (а только такая истина и возможна при индуктивных рассуждениях) вполне возможно. Для этого достаточно некоторого множества положительных примеров при полном отсутствии отрицательных примеров, опровергающих выдвинутую гипотезу. А число необходимых положительных примеров, необходимых для того, чтобы считать гипотезу эмпирически истинной, может быть разным в различных обстоятельствах и у разных людей. Недаром же все представители рода человеческого делятся на тех, кто готов верить в нечто всего по одному примеру, и тех, кто подобно евангельскому Фоме никогда не может уверовать до конца даже в самые очевидные для остальных истины.
Рассмотренный пример иллюстрирует процесс оценивания степени достоверности гипотезы, когда предполагаемая причина (в нашем случае – принадлежность автомашины к множеству такси) уже выделена из множества возможных причин. В ДСМ-методе формализован не только этот этап, но и предшествующий ему этап нахождения кандидата в причины, которая могла бы вызвать интересующее нас следствие. В примере это соответствовало бы следующему. Наблюдая на улицах города потоки автотранспорта и выделяя среди автомашин ярко-желтые, надо «сообразить», что желтыми являются только такси.
Причины могут быть различными по типу. Наиболее редкими являются необходимые и достаточные причины. Если аi – причина такого типа, то bj происходит всегда, и если bj произошло, то наверняка было аi. Примерами такой «жесткой» связи двух явлений может служить падение тела, если для него отсутствует опора. Чаще встречаются достаточные причины, всегда вызывающие появление bj. Но появление bj не служит стопроцентным обоснованием того, что до этого было аi. Следствие bj могло быть вызвано и какими-то другими достаточными причинами. Если, например, ваш друг не пришел в условленное место и в условленное время на свидание, то, возможно, он заболел, ибо болезнь – достаточная причина для отказа от свидания, но весьма вероятно, что были какие-то другие причины нарушения им своего обещания.
Дополнительные причины обладают тем свойством, что их наличие не вызывает следствия bj. Для того чтобы bj появилось, нужен вполне определенный набор дополнительных причин, который выступает в роли обобщенной достаточной причины появления bj. Легко себе представить такой набор причин, который приводит к попаданию мяча в сетку ворот при игре в футбол. Перечисление и обсуждение дополнительных причин, приведших к голу, – знакомое занятие для каждого истинного любителя футбола. Среди дополнительных причин могут быть необходимые дополнительные причины. Их вхождение в набор, образующий обобщенную достаточную причину, обязательно для того, чтобы bj реализовалось. Остальные дополнительные причины можно назвать факультативными. В окончательный набор могут входить те или иные комбинации факультативных причин. Так, в ситуации забивания гола две дополнительные причины являются заведомо необходимыми: удар, посылающий мяч в ворота, и ошибка вратаря. Остальные дополнительные причины являются факультативными. Наконец, возможные причины аi обладают тем свойством, что появление аi необязательно вызывает bj, но увеличивает возможность появления bj.
Кроме причин аi важную роль в процессах реализации причинно-следственных зависимостей играют так называемые тормоза. Наличие тормоза наряду с причиной, вызывающей bj в обычных условиях, приводит к тому, что bj не появляется. Так, принятие смертельной дозы яда не приводит к ожидаемому исходу, если до этого было принято противоядие.
Вернемся к ДСМ-методу. После сказанного становится ясным, что нахождение причин – кандидатов для формируемых гипотез – дело далеко не простое. В положительных и отрицательных примерах эти причины скрыты в описаниях реальных объектов, обладающих или не обладающих интересующими нас свойствами. Из этих описаний надо выделить кандидатов в причины, а затем убедиться, что выбор оказался не случайным. При первом реальном использовании ДСМ-метода одной из конкретных задач была задача нахождения причин того, что некоторое органическое химическое соединение будет обладать свойством биологической активности. Постулировалась, что информация о причинах биологической активности скрыта в структурной формуле того или иного соединения. Какие-то особенности этих формул оказывали влияние на интересующее исследователей свойство. Экспериментально для многих соединений было установлено наличие или отсутствие в них биологической активности. Эти экспериментальные факты составляли множество положительных и отрицательных примеров. На основании их программы, реализующие ДСМ-метод, должны были найти новые, не известные химикам и фармакологам закономерности, позволяющие без экспериментальной проверки (весьма дорогой и длительной) оценивать возможность того, что вновь синтезированное вещество будет обладать биологической активностью.
Суть того, как это делалось с помощью ДСМ-метода, состоит в следующем. Рассмотрим группу положительных примеров. Находим некоторую часть описания объектов, общую для определенной совокупности примеров из этой группы. Например, обнаруживаем в значительной части структурных формул соединений, обладающих свойством биологической активности, кольцевую структуру с фиксированным заполнением позиций в этой структуре. Тогда есть основания считать ее кандидатом в причины. Таких кандидатов может оказаться несколько. Образуем матрицу М+, в которой строки соответствуют выделенным кандидатам аi, а столбцы – интересующим нас следствиям bj (при одном интересующем нас следствии в М+будет один столбец). На пересечении строк и столбцов будем записывать оценки достоверности qk гипотез hi+jk. Об их нахождении будет сказано ниже. Для множества отрицательных примеров аналогичным образом строится другая матрица М–, в которой содержатся оценки достоверности отрицательных гипотез hi–jk. Кандидаты в причины в матрицах М+и М?могут частично совпадать, так как положительные и отрицательные примеры не образуют полной выборки из всего множества возможных примеров.