Категории
Самые читаемые
ChitatKnigi.com » 🟢Разная литература » Прочее » Современный чародей физической лаборатории - Вильям Сибрук

Современный чародей физической лаборатории - Вильям Сибрук

Читать онлайн Современный чародей физической лаборатории - Вильям Сибрук
1 ... 18 19 20 21 22 23 24 25 26 ... 68
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Чем же была отрасль науки, которую выбрал Вуд? Физическая оптика научное название той области, которая объединяет знания, методы и ресурсы физики, связанные с исследованием свойств и природы света, а также его применений. В этом смысле "физическая оптика" так же стара, как первая мысль человека о причине радуги. Как настоящую науку ее следует начинать с Исаака Ньютона, который впервые доказал, что призма разлагает белый свет на его "простые" цвета, при соединении вновь слагающиеся в белый световой луч. Он же открыл многое другое, касающееся света. Почти два века после Ньютона ученые занимались основными свойствами обычного света. Они измерили его скорость в пространстве. Они изучили, как преломляется световой луч, проходя через различные среды, такие, как стекло, кварц, вода, цветные растворы,нашли законы этого преломления. До Ньютона, сам Ньютон, а впоследствии многие заметили, что луч света загибается, пройдя через узкую щель, и что ни одна тень, если ее внимательно исследовать, не имеет резкой границы - и назвали это явление дифракцией. Изучено было также явление интерференции, состоящее в том, что два родственные, "когерентные" луча, возникшие от расщепления одного первоначального луча, взаимодействуют с другим, и в результате наступает полная темнота или ненормально яркий свет. В середине девятнадцатого века уже достаточно знали о свете, чтобы утверждать, что свет, лучистая теплота, электрическое и магнитное поле - родственные явления: свет - это электромагнитные волны в гипотетической среде, названной эфиром, отличающиеся друг от друга только длиной волны, или, что то же самое, частотой колебания.

Классическая теория света была вполне законченной задолго до появления на сцену Вуда. Но в 1859 году открылись новые широкие возможности в физической оптике - спектроскоп был впервые применен для исследования химической природы вещества. Это открытие Бунзена и Кирхгофа сделало спектроскоп одним из главных инструментов современной науки и особенно укрепило практическое положение физической оптики. Свет стал не только объектом исследования, но и мощным орудием исследования природы физического мира. Малейшие следы веществ открывались по спектру, и самые далекие звезды и туманности обнаруживали свой химический состав и даже свои скорости и направление движения, если изучать их спектры. Развиваясь, эта отрасль науки усложнялась - обнаружилось, что одно и то же вещество давало различные спектры, в зависимости от своего физического состояния. Таким образом, спектральный анализ открывал не только химический состав, но и физическое состояние, в котором находится вещество.

Когда Вуд появился на сцене, в конце девятнадцатого столетия, физическая оптика переживала этап весьма бурного развития, как и вся, впрочем, физика в целом. Роль Вуда - смелый эксперимент: его работы нередко бросали вызов формулам теоретиков или же, наоборот, блестяще подтверждали их. Его первая работа по физической оптике дает этому блестящий пример, поясняя также исключительную широту его "специальной" науки. Вот рассказ Вуда:

"Полное солнечное затмение 28 мая 1900 года поставило передо мной задачи, решение которых можно рассматривать как мой первый вклад в физическую оптику. То, что было до этого, шло более по линии демонстраций или истолкований. Морская обсерватория в Вашингтоне пригласила меня принять участие в ее экспедиции по наблюдению затмения, и я расположился с группой в Пайнхерсте (Северная Каролина), около середины пояса полного затмения, где его продолжительность была наибольшей. Здесь я впервые наблюдал солнечную корону и красные языки раскаленного водорода, которые полыхали на краю солнечного диска. Меня особенно интересовал их спектр. Как раз перед полным затмением, когда край солнца вот-вот исчезнет за луной, можно секунду или две наблюдать огненный полумесяц, который, если его рассматривать с помощью призмы или дифракционной решетки, распадается на спектр цветных полумесяцев, разделенных темными интервалами разной ширины. Это - так называемый спектр "вспышки" хромосферы, т.е. оболочки светящихся раскаленных паров металлов, которой окружено солнце. Поглощение этой атмосферой накаленных паров еще более интенсивного и яркого излучения поверхности жидкого "ядра" солнца дает в солнечном спектре темные линии, видимые в спектроскоп. Эти линии - не совершенно черные, а содержат менее яркий свет раскаленного пара.

По возвращении в Мэдисон осенью я прочел в октябрьском номере Astrophysical Journal статью Юлиуса, голландского астронома, выдвигавшего смелую теорию о том, что спектр вспышки хромосферы вызывается аномальной дисперсией белого света, излучаемого жидкой поверхностью солнца. Я сразу же начал опыты, целью которых было - получить подобный спектр в условиях лаборатории. Перед Рождеством я уже послал в Astrophysical Journal отчет об успешном экспериментальном подтверждении теории Юлиуса. Для этого понадобилось создать над белой поверхностью атмосферу паров натрия, в которой плотность изменялась бы чрезвычайно быстро с удалением от поверхности. Я нагревал металлический натрий в железной ложке под куском белого гипса, ожидая, что конденсация пара на холодной поверхности даст необходимое падение плотности с расстоянием. Белая поверхность гипса, ограничивавшая атмосферу натрия, была освещена сильным пучком солнечного света, собранным большой линзой. Освещенный таким образом гипс изображал раскаленную добела поверхность Солнца, а пары натрия - хромосферу. Наблюдая белое пятно через телескоп и призму прямого зрения и передвигая инструмент вверх, можно было растянуть пятно в линию; при этом появлялся темный солнечный спектр поглощения, подобно тому, как это происходит во время затмения, когда диск солнца почти закрыт луной. С приближением спектроскопа к плоскости освещенной поверхности солнечный спектр исчез, и на его месте внезапно появились две узкие желтые линии, соответственно прежним линиям поглощения. Юлиус сразу же написал мне письмо, выражая свое удовлетворение результатами опыта, так хорошо подтверждавшими его теорию. После этой удачи я понял, что изучение оптических свойств плотных поглощающих свет паров металлического натрия может дать важные результаты для подтверждения существовавших тогда оптических теорий, и я решил начать исследование дисперсии света в этих парах".

Перед нами блестящий пример широкого кругозора Вуда в области физики. Человек воспроизводит в своей лаборатории модель того, что происходит от него за девяносто два миллиона миль, и умножает наши сведения о нашем основном источнике света. Опыт интересен и с другой стороны, он показывает характерные черты экспериментальной техники Вуда - остроумное применение самого простого оборудования. Об этом еще не раз придется говорить: старые железные трубы, выброшенные части велосипеда, домашний "хлам" - все это играет некоторую роль в самых важных и значительных работах Вуда. Он обладает особым талантом - использовать в своих целях все, что попадется под руку.

Работы Вуда с парами натрия и их оптическими свойствами, которые начались с этого эксперимента, продолжались в течение почти всей его жизни. Возможно, что в нем все еще был жив мальчик, которого когда-то поразило свойство этого металла - взрываться от соприкосновения с водой. Во всяком случае, он поставил себе задачу раскрыть все секреты натрия. Выполняя ее, он сделал ценные вклады в современную теорию природы вещества.

Вуд скоро получил неизвестные доселе виды спектров паров натрия,- а также паров ртути и йода. Его результаты сразу же повергли физиков-теоретиков в ужас и смятение. Не спросив у них разрешения, молодой и беспокойный экспериментатор увеличил число спектральных линий в основных сериях натрия с восьми, известных тогда, до сорока восьми и нашел широкую полосу поглощения в ультрафиолетовой области. По теориям конца девятнадцатого века, каждая спектральная линия излучалась отдельным "вибратором" в атоме, и последний, как выразился Дарроу [Современный американский физик-популяризатор. Ред.], казался похожим на колокольню или орган. Сам Роуланд однажды сказал, что атом гораздо более сложен, чем большой рояль. Результаты Вуда еще более усложнили его, и они не могли быть объяснены, пока Нильс Бор не формулировал в 1913 году основы современной теории атома. В первой своей статье по этому, предмету Бор говорил, что работы Вуда с натрием - самое совершенное подтверждение его теории атомного излучения.

Здесь же, в Мэдисоне, Вуд начал другую область работ, которая также продолжается в течение всей его жизни. Он заинтересовался изготовлением и применением дифракционных решеток. Это - стеклянные или металлические пластинки, на которых проведено большое количество очень тонких линий (иногда до тридцати тысяч на дюйм). Дифракционные решетки выполняют ту же функцию, что и призмы, разлагая свет на его компоненты, и для многих областей спектроскопии имеют большие преимущества по сравнению с последними. Конечно, изготовление их очень точная и тонкая работа. Знаменитый Роуланд делал лучшие решетки своего времени в лаборатории университета Дж. Гопкинса. Вуд продолжал и улучшил методы Роуланда. В то время, как я пишу эту книгу, он готовится отправиться в Калифорнию со своим новым шедевром в этой области!

1 ... 18 19 20 21 22 23 24 25 26 ... 68
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?