Категории
Самые читаемые
ChitatKnigi.com » 🟢Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ЦВ) - БСЭ БСЭ

Большая Советская Энциклопедия (ЦВ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (ЦВ) - БСЭ БСЭ
1 ... 18 19 20 21 22 23 24 25 26 ... 28
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

  Субъективное впечатление в любительской и профессиональной фото- и кинематографии является главным и по существу единственным критерием точности Ц. ф., причём оно не связано однозначно с объективными оценками Ц. ф. (спектральными, колориметрическим т.к. решающим образом зависит от многих переменных факторов, предполагаемых при объективной оценке постоянными. Среди этих факторов важнейшие связаны со свойствами самого изображения и условиями его показа (например, условия освещения и яркость изображения, масштаб увеличения или уменьшения, окружающий фон и его цветность) и свойствами глаза при рассматривании (прежде всего его цветовой адаптацией); весьма важны также условия сопоставления (в частности, рассматривается ли изображение в тех же условиях, что и объект, рассматриваются они оба одновременно или раздельно, и т.д.). В основу количественной оценки (если она нужна) психологической точности Ц. ф. можно положить т. н. порог цветоразличения (см. Цветовой контраст ) то минимальное изменение цвета, которому при данных условиях наблюдения соответствует первое едва заметное изменение зрительного ощущения.

  Лит.: Нюберг Н. Д., Теоретические основы цветной репродукции, М., 1947; Артюшин Л. Ф.. Основы воспроизведения цвета в фотографии, кино и полиграфии М., 1970.

  А. Л. Картужанский.

Цветовые измерения

Цветовы'е измере'ния, методы измерения и количественного выражения цвета. Вместе с различными способами математического описания цвета Ц. и. составляют предмет колориметрии. В результате Ц. и. определяются 3 числа, т. н. цветовые координаты (ЦК), полностью определяющие цвет (при некоторых строго стандартизованных условиях его рассматривания).

  Основой математического описания цвета в колориметрии является экспериментально установленный факт, что любой цвет при соблюдении упомянутых условий можно представить в виде смеси (суммы) определённых количеств 3 линейно независимых цветов, т. е. таких цветов, каждый из которых не может быть представлен в виде суммы каких-либо количеств 2 других цветов. Групп (систем) линейно независимых цветов существует бесконечно много, но в колориметрии используются лишь некоторые из них. Три выбранных линейно независимых цвета называют основными цветами ; они определяют цветовую координатную систему (ЦКС). Тогда 3 числа, описывающие данный цвет, являются количествами основных цветов в смеси, цвет которой зрительно неотличим от данного цвета; это и есть ЦК данного цвета.

  Экспериментальные результаты, которые кладут в основу разработки колориметрической ЦКС, получают при усреднении данных наблюдений (в строго определённых условиях) большим числом наблюдателей; поэтому они не отражают точно свойств цветового зрения какого-либо конкретного наблюдателя, а относятся к т. н. среднему стандартному колориметрическому наблюдателю.

  Будучи отнесены к стандартному наблюдателю в определённых неизменных условиях, стандартные данные смешения цветов и построенные на них колориметрической ЦКС описывают фактически лишь физический аспект цвета, не учитывая изменения цветовосприятия глаза при изменении условий наблюдения и по др. причинам (см. Цвет ).

  Когда ЦК какого-либо цвета откладывают по 3 взаимно перпендикулярным координатным осям, этот цвет геометрически представляется точкой в трёхмерном, т. н. цветовом, пространстве или же вектором , начало которого совпадает с началом координат, а конец — с упомянутой точкой цвета. Точечная и векторная геометрическая трактовки цвета равноценны и обе используются при описании цветов. Точки, представляющие все реальные цвета, заполняют некоторую область цветового пространства. Но математически все точки пространства равноправны, поэтому можно условно считать, что и точки вне области реальных цветов представляют некоторые цвета. Такое расширение толкования цвета как математического объекта приводит к понятию т. н. нереальных цветов, которые невозможно как-либо реализовать практически. Тем не менее с этими цветами можно производить математические операции так же, как и с реальными цветами, что оказывается чрезвычайно удобным в колориметрии. Соотношение между основными цветами в ЦКС выбирают так, что их количества, дающие в смеси некоторый исходный цвет (чаще всего белый), принимают равными 1.

  Своего рода «качество» цвета, не зависящее от абсолютной величины цветового вектора и называется его цветностью, геометрически удобно характеризовать в двумерном пространстве — на «единичной» плоскости цветового пространства, проходящей через 3 единичные точки координатных осей (осей основных цветов). Линии пересечения единичной плоскости с координатными плоскостями образуют на ней равносторонний треугольник, в вершинах которого находятся единичные значения основных цветов. Этот треугольник часто называют треугольником Максвелла. Цветность какого-либо цвета определяется не 3 его ЦК, а соотношением между ними, т. е. положением в цветовом пространстве прямой, проведённой из начала координат через точку данного цвета. Другими словами, цветность определяется только направлением, а не абсолютной величиной цветового вектора, и, следовательно, её можно характеризовать положением точки пересечения этого вектора (либо указанной прямой) с единичной плоскостью. Вместо треугольника Максвелла часто используют цветовой треугольник более удобной формы — прямоугольный и равнобедренный. Положение точки цветности в нём определяется двумя координатами цветности, каждая из которых равна частному от деления одной из ЦК на сумму всех 3 ЦК. Двух координат цветности достаточно, т.к. по определению сумма её 3 координат равна 1. Точка цветности исходного (опорного) цвета, для которой 3 цветовые координаты равны между собой (каждая равна 1 /3 ), находится в центре тяжести цветового треугольника.

  Представление цвета с помощью ЦКС должно отражать свойства цветового зрения человека. Поэтому предполагается, что в основе всех ЦКС лежит т. н. физиологическая ЦКС. Эта система определяется 3 функциями спектральной чувствительности 3 различных видов приёмников света (т. н. колбочек), которые имеются в сетчатке глаза человека и, согласно наиболее употребительной трёхцветной теории цветового зрения, ответственны за человеческое цветовосприятие. Реакции этих 3 приёмников на излучение считаются ЦК в физиологической ЦКС, но функции спектральной чувствительности глаза не удаётся установить прямыми измерениями. Их определяют косвенным путём и не используют непосредственно в качестве основы построения колориметрических систем.

  Свойства цветового зрения учитываются в колориметрии по результатам экспериментов со смешением цветов. В таких экспериментах выполняется зрительное уравнивание чистых спектральных цветов (т. е. цветов, соответствующих монохроматическому свету с различными длинами волн) со смесями 3 основных цветов. Оба цвета наблюдают рядом на 2 половинках фотометрического поля сравнения. По достижении уравнивания измеряются количества 3 основных цветов и их отношения к принимаемым за 1 количествам основных цветов в смеси, уравнивающей выбранный опорный белый цвет. Полученные величины будут ЦК уравниваемого цвета в ЦКС, определяемой основными цветами прибора и выбранным опорным белым цветом. Если единичные количества красного, зелёного и синего основных цветов обозначить как (К), (З), (С), а их количества в смеси (ЦК) — К, З, С, то результат уравнивания можно записать в виде цветового уравнения: Ц* = К (К) + З (З) + С (С). Описанная процедура не позволяет уравнять большинство чистых спектральных цветов со смесями 3 основных цветов прибора. В таких случаях некоторое количество одного из основных цветов (или даже двух) добавляют к уравниваемому цвету. Цвет получаемой смеси уравнивают со смесью оставшихся 2 основных цветов прибора (или с одним). В цветовом уравнении это учитывают переносом соответствующего члена из левой части в правую. Так, если в поле измеряемого цвета был добавлен красный цвет, то Ц* = — К (К) + З (З) + С (С). При допущении отрицательных значений ЦК уже все спектральные цвета можно выразить через выбранную тройку основных цветов. При усреднении результатов подобной процедуры для нескольких наблюдателей были получены значения количеств 3 определённых цветов, требующиеся в смесях, зрительно неотличимых от чистых спектральных цветов, которые соответствуют монохроматическим излучениям одинаковой интенсивности. При графическом построении зависимостей количеств основных цветов от длины волны получаются функции длины волны, называемые кривыми сложения цветов или просто кривыми сложения.

1 ... 18 19 20 21 22 23 24 25 26 ... 28
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈