Категории
Самые читаемые
ChitatKnigi.com » 🟢Документальные книги » Публицистика » Как постепенно дошли люди до настоящей арифметики [без таблиц] - Всеволод Беллюстин

Как постепенно дошли люди до настоящей арифметики [без таблиц] - Всеволод Беллюстин

Читать онлайн Как постепенно дошли люди до настоящей арифметики [без таблиц] - Всеволод Беллюстин
1 ... 18 19 20 21 22 23 24 25 26 ... 43
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Вотъ, какъ онъ выполняетъ дѣленіе 2596860019 на 38784.

Частное 67019, остатокъ 7807. При этомъ Тарталья говоритъ, что хорошо бы передъ дѣленіемъ заготовлять произведенія дѣлителя на всѣ однозначныя числа; тогда виднѣе было бъ, какою цифрою задаваться въ частномъ, да и не нужно составлять отдѣльно произведеній дѣлителя на цифры частнаго, такъ-какъ они ужъ есть, и останется прямо вычитать.

6) Клавіусъ въ XVII ст. вводитъ нашъ знакъ дѣленія (при помощи угла), но числа при дѣленіи располагаетъ не по нашему. Примѣръ: 1902942 : 2978=639.

7) Вендлеръ, нѣмецкій педагогъ XVII в., употребляетъ почти нашъ пріемъ, съ тою только разницей, что дѣлитель и частное у него ставятся по обѣимъ сторонамъ дѣлимаго.

Кромѣ того, цифры дѣлимаго не сносятся, а остаются на своемъ прежнемъ мѣстѣ вверху.

8) Пешекъ въ XVIII ст. вычисляетъ такъ же, какъ и Вендлеръ. Пешекъ даетъ нашему способу названіе французскаго.

9) Баргь въ XVIII ст. пишетъ дѣлителя подъ дѣлимымъ при всякомъ частномъ дѣленіи, слѣд. столько разъ, сколько разрядовъ въ частномъ. 66734 : 325= 205 109/325

10) Въ русскихъ математическихъ рукописяхъ XVII столѣтія встрѣчаются, какъ и слѣдовало ожидать, тѣ же самые пріемы, какіе выработала Западная Европа. Они перешли къ намъ черезъ Польшу, такъ какъ именно польская ученость давала пищу русской образованности XVII вѣка. Чаще всего въ это время встрѣчается способъ Апіана (см. выше, 4). У Магницкаго, стр. К а оборотѣ представлено дѣленіе въ такомъ видѣ.

Здѣсь дѣлимое 5175 помѣщено во второй строкѣ, частное справа, дѣлитель 15 переписывается трижды (въ третьей и пятой строкахъ), четвертая и пятая строка отведены частнымъ произведеніямъ, а верхняя—остатку отъ вычитанія. Изъ этого видно, что цифры расположены довольно несистематично и неудобно, такъ что сбиться въ нихъ очень легко. Но, по правилу, «изъ двухъ золъ выбирай менынее», Магницкій очень доволенъ этимъ способомъ и одобряетъ его въ слѣдующихъ выраженіяхъ: «Мнози убо дѣлятъ перечни сицевымъ образомъ: егда дѣлителемъ емлютъ, изъ числъ дѣлимаго, и написавши за чертою, умножаютъ имъ весь дѣлитель и, подписавши вычитаніемъ, вычитаютъ изъ дѣлимаго. И намъ видится, сицевымъ образомъ есть удобнѣйше, но тѣмъ иже слабѣйшеее разумѣніе и тщаніе имутъ: зане не толикаго есть домышленія, и остроты». Далѣе у Магницкаго идетъ способъ, цохожій на Барта (см. выше, 9), и способъ Вендлера (выше, 7). Вліяніе Вендлера вполнѣ замѣтно въ ариѳметикѣ Василія Адодурова (1740 г), Румовскаго (1760 г.), Кузнецова (1760 г.). У Загорскаго (1806 г.) является нашъ нормальный способъ во всей чистотѣ.

Австрійскій способъ дѣленія.

Подъ именемъ австрійскаго способа разумѣется такой, который хотя и похожъ на нашъ нормальный, но отличается отъ него большімъ примѣненіемъ устнаго счета. Австрійскій способъ можно считать шагомъ впередъ сравнительно съ нашимъ способом, въ немъ меньше шісьма и самое дѣйствіе совершается вслѣдствіе этого гораздо быстрѣе, правда, есть въ немъ и неудобство: именно, человѣкъ, мало-мальски невнимательный, легко въ немъ сдѣлаетъ ошибку и собьется. Для примѣра возьмемъ 167585 : 365. Первая цифра частнаго будетъ 4; составляемъ произведеніе 365 на 4, начиная съ низшихъ разрядовъ, но не подписываемъ этого произведенія подъ дѣлимымъ, а вычитаемъ каждый разрядъ его, какъ только онъ получится, и пишемъ прямо остатокъ: 4×5=20, слѣд. въ остаткѣ 5; 4×6=24, да 2, 26, 6 изъ 7=1, слѣд. въ остаткѣ 1; далѣе 3×4=12 да 2—14, 14 изъ 16 даетъ въ остаткѣ 2; всего получится послѣ вычитанія 215; сносимъ слѣдующую цифру 3 и дѣлимъ новое число 2153 такъ же, какъ и предыдущее, т.-е. одновременно производимъ умноженіе и вычитаніе.

Австрійская метода стала выдвигаться на первый планъ сравнительно недавно, съ средины XIX вѣка, но зачатки ея простираются вплоть до XVII вѣка; еще Вендлеръ даетъ образецъ такого сокращеннаго дѣленія.

Кегель въ XVII ст. даетъ болѣе грубую форму этого способа, такъ какъ онъ начинаетъ умноженіе съ высшихъ разрядовъ, а не съ низшихъ и ему приходится лишній разъ измѣнять цифры. Вотъ какъ у него идетъ дѣленіе 135513 на 21:

Наконецъ, Маурахеръ (XVIII в.) пользуется такимъ расположеніемъ вычисленія:

При этомъ частное 12345 помѣщается внизу, дѣлитель 8 слѣва, а дѣлимое 98760 правѣе дѣлителя.

Испанскій способъ дѣленія.

Это самая употребительная, самая распространенная форма дѣленія. Теперь ея уже нѣтъ въ учебникахъ и объ ней не вспоминаютъ, но почти въ теченіе тысячи лѣтъ, съ IX вѣка до XIX, она являлась общеизвѣстной и популярной формой. Начало ей положили арабы; черезъ Испанію она была принесена въ Западную Европу и потому получила названіе «испанскаго» способа. Участь его можно сравнить съ той, которую пришлось испытать обученію грамотѣ по методу: «буки азъ ба». Теперь этотъ методъ отжилъ свой вѣкъ и скоро о немъ, навѣрное, забудутъ, а въ свое время онъ пользовался общепризнаннымъ авторитетомъ и на немъ воспитывался длинный рядъ поколѣній: наши отцы, дѣды и прадѣды, и дѣды нашихъ прадѣдовъ. Тоже случилось съ испанскимъ дѣленіемъ. Сколько надъ нимъ старались, сколько хлопотали надъ его усовершенствованіемъ, а сейчасъ его забыли. Правду сказать, горевать объ этомъ не приходится, потому что—то было дѣленіе длинное, сбивчивое и обильное всякими недоразумѣніями. Надо думать, что корень его скрывается въ индусской математикѣ, судя по тому, что вычислять подобнымъ образомъ очень удобно было на пескѣ, какъ то было принято у индусовъ. Когда же этотъ способъ сталъ примѣняться на бумагѣ, то получилось нѣчто несообразное по основной идеѣ: цифры, которыя слѣдовало стирать, оставались нетронутыми (иногда зачеркивались), нагромождались другъ на друга и давали массу лишняго и безполезнаго письма. Приведемъ примѣры.

1) Примѣръ Альхваризми, араба IX столѣтія. Требуется 46468 раздѣлить на 324, частное 143.

Какъ видно, дѣлимое въ срединѣ; подъ нимъ помѣщается дѣлитель и при томъ переписывается столько разъ, сколько цифръ въ частномъ; такое передвиженіе осталось, конечно, отъ вычисленій на пескѣ, когда такъ легко было стирать цифры и писать ихъ еще разъ въ болѣе удобномъ положеніи; первая цифра частнаго будетъ 1, первый остатокъ 140 пишется надъ частнымъ; теперь надо дѣлить 1406 на 324, въ частномъ будетъ 4; умноженіе 324 на 4 идетъ съ высшихъ разрядовъ и одновременно же происходитъ вычитаніе. Вотъ гдѣ, между прочимъ, основаніе для австрійскаго способа, разобраннаго нами выше. Такъ какъ 3×4=12, то вычитаемъ 12 изъ 14-ти и иолучаемъ 2, которое и пишемъ надъ 4-мя; далѣе 2×4=8, 8 изъ 10=2, слѣд. надъ нулемъ надо помѣстить 2, а прежнюю цифру десятковъ 2 надо замѣнить новой 1, написавши эту 1 надъ двумя. Такъ дѣйствіе идетъ до самаго конца, т.-е. умноженіе производится съ высшихъ разрядовъ и сопровождается вычитаніемъ, при чемъ измѣненныя цифры переписываются выше.

2) Альнасави, арабскій писатель XI вѣка, нѣсколько упрощаетъ письмо и даетъ хоть небольшой просторъ устному счету. 2852:12 онъ рѣшаетъ такъ:

Интересно отмѣтить, какъ Альнасави изображаетъ частное. Цѣлое число 237 онъ пишетъ вверху, подъ нимъ остатокъ, а подъ нимъ уже дѣлителя; все это считается обозначеніемъ смѣшанной дроби 2378/12.

Греческій монахъ Максимъ Планудесъ, одинъ изъ немногихъ представителей византійской учености, даетъ еще болѣе легкій образецъ дѣленія, но, конечно, Планудесъ потому такъ легко справляется, что примѣръ-то самъ по себѣ не замысловатъ. 4865 : 5=973. Вычисленіе идетъ такъ:

4) Алькальцади, жившій въ XV ст., хотя и является заключительнымъ звеномъ въ блестящей цѣпи арабскихъ математиковъ, но все-таки не можетъ обойтись безъ того, чтобы не переписать дѣлителя нѣсколько разъ даже въ легкомъ примѣрѣ. 924 : 6 у него представляется въ такомъ видѣ:

3 2

9 2 4

6 6 6

——————

1 5 4

Частное въ самомъ низу, дѣлитель надъ нимъ, еще выше дѣлимое и, наконецъ, въ самой верхней строкѣ послѣдовательные остатки.

5) Петценштейнеръ въ XV ст., нѣмецкій пегагогъ, нисколько не измѣняетъ основного хода дѣйствія и всего только вводитъ ту подробность, что пишетъ частное справа за чертой. Дано раздѣлить 467 на 19.

Получается довольно красивое расположеніе, съ ясной наклонностью къ симиетріи. Начиная съ этихъ поръ, математики обращаютъ вниманіе на то, чтобы груда цифръ не представляла собой чего-то безпорядочнаго и несимметричнаго, а образовывала изящную фигуру, построенную по извѣстной идеѣ. Особенно любили изощряться надъ построеніемъ фигуръ итальянцы, и надо отдать имъ справедливость, что они много успѣли въ этой безполезной и даже вредной игрѣ; вѣдь всякая погоня за ненужнымъ и постороннимъ вредитъ, въ концѣ концовъ, главной и существенной цѣли; такъ и здѣсь, одинъ авторъ передъ другимъ старались придумать что-нибудь оригинальное, красивое и стройное по внѣшнему виду, но забывали главное достоинство, т.-е. быстроту вычисленій, удобство и вѣрность.

1 ... 18 19 20 21 22 23 24 25 26 ... 43
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?