Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Биология » Глаз, мозг, зрение - Дэвид Хьюбел

Глаз, мозг, зрение - Дэвид Хьюбел

Читать онлайн Глаз, мозг, зрение - Дэвид Хьюбел
1 ... 17 18 19 20 21 22 23 24 25 ... 65
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

В отличие от клеток на более низких уровнях зрительной системы нейроны, избирательно чувствительные к ориентации стимула, гораздо лучше отвечают на движущиеся, чем на неподвижные линии. Именно поэтому (см. рис. 41) при стимуляции таких нейронов мы использовали линии, движущиеся через рецептивное поле. Если использовать в качестве стимула неподвижную мелькающую (периодически вспыхивающую) линию, то зачастую клетка дает слабый ответ, и в этом случае предпочтительной оказывается такая же ориентация, как и при движущейся линии.

Многие клетки (вероятно, треть всей популяции) дают еще один характерный вид ответа на движущийся стимул. Вместо того чтобы давать один и тот же импульсный разряд независимо от направления движения, такие клетки отвечают более энергично при одном определенном направлении. Бывает даже так, что движение в одну сторону вызывает сильно выраженный ответ, а при движении в противоположную сторону нет вообще никакой реакции (это показано на рис. 41).

За один эксперимент можно оценить реакции 200–300 клеток, если после полного исследования одной клетки просто продвигать микроэлектрод дальше, до следующей клетки. Недостаток такой методики в том, что в одном прогоне можно исследовать только клетки, лежащие в коре на одной прямой линии: как только вы ввели тончайший микроэлектрод в корковую ткань, вы уже не можете сдвинуть его в поперечном направлении, не повредив при этом сам электрод или еще более нежную нервную ткань. С помощью такой методики регистрации самое большее, что мы можем сделать — это исследовать при одной проходке микроэлектрода примерно 50 клеток на миллиметр. Когда мы исследуем ориентационную избирательность нескольких сотен или тысяч клеток, оказывается, что все ориентации стимула встречаются примерно одинаково часто — вертикальная, горизонтальная и все промежуточные, наклонные ориентации. Если учесть характерные особенности окружающего нас мира, в который входят как деревья, так и линия горизонта, то возникнет вопрос: нет ли каких-нибудь выделенных ориентаций, таких как вертикаль и горизонталь, которые встречались бы чаще, чем другие? При попытках ответить на этот вопрос в разных лабораториях получали несколько разные результаты. Однако все исследователи соглашаются, что, если такие предпочтения действительно имеют место, они должны быть очень малы — настолько малы, что для выявления их требуется статистическая обработка данных. А в этом случае они вряд ли имеют какое-либо значение!

В стриарной коре обезьян примерно 70–80% клеток обладают свойствами ориентационной избирательности. Что касается кошек, то у них, по-видимому, все корковые клетки чувствительны к ориентации стимула, даже те, которые имеют прямые входы от наружных коленчатых тел.

Мы обнаружили заметные различия среди ориентационно-специфичных клеток, причем не столько в оптимальной ориентации стимула или в положении рецептивного поля на сетчатке, сколько в характере поведения клеток. Наиболее существенно различие между двумя классами нейронов — простыми и сложными клетками. Как можно догадаться по их названиям, клетки этих двух классов различаются по сложности своих ответных реакций. Поэтому мы сделали естественное предположение о том, что клетки с более простым поведением расположены в нейронной структуре коры ближе к ее входу.

Простые клетки

В большинстве случаев по ответам простых клеток на стимул в виде маленького светового пятна можно предсказать их реакцию на стимул сложной формы. Каждая из простых клеток, подобно ганглиозным клеткам сетчатки, клеткам НКТ и корковым клеткам с центрально-симметричными рецептивными полями, имеет небольшое четко очерченное рецептивное поле. Предъявление в пределах этого рецептивного поля стимула в виде светового пятнышка вызывает либо on-, либо off-реакцию в зависимости от того, в какой именно участок рецептивного поля подан стимул. Различие между простыми клетками и клетками предыдущих уровней заключается в конфигурации зон возбуждения и торможения. На предыдущих уровнях это центрально-симметричная конфигурация — имеется одна центральная on- или off-зона (возбуждающая или тормозная) и окружающая ее со всех сторон кольцевая зона с противоположными свойствами (тормозная или возбуждающая). Простые клетки коры более сложны. Зоны возбуждения и торможения в их рецептивных полях всегда разделены одной прямой линией или двумя параллельными линиями (рис. 42). Чаще всего встречается такая конфигурация, когда к длинной и узкой возбуждающей зоне с двух сторон примыкают более широкие тормозные зоны (рис. 42, А).

Рис. 42. Карты трех типичных рецептивных полей простых клеток. Оптимальными стимулами служили: для клетки А — светлая полоса против возбуждающей области (+); для клетки Б — темная линия, покрывающая тормозную зону (–); для клетки В — резкая граница «темное — светлое», совпадающая с границей между возбуждающей и тормозной зонами.

Для того чтобы проверить предполагаемую карту рецептивного поля, составленную путем тестирования маленьким световым пятном, мы попробовали использовать в качестве стимулов другие конфигурации. Вскоре мы выяснили, что чем большую долю той или иной зоны рецептивного поля покрывает данный стимул, тем сильнее выражено возбуждение клетки или ее торможение. Иными словами, имеет место пространственная суммация локальных воздействий. Мы обнаружили также явление антагонизма — взаимного погашения локальных воздействий при одновременной стимуляции возбуждающей и тормозной зоны. Таким образом, для клетки с рецептивным полем, изображенным на рис. 42, А, наиболее подходящим будет стимул в виде узкой полосы, расположенной в рецептивном поле так, чтобы она точно совпадала с возбуждающей зоной и не заходила в тормозную зону (см. рис. 43). Даже незначительное изменение ориентации этой полосы приведет к уменьшению эффективно действующей площади зоны возбуждения и затронет также тормозную зону; в результате частота разряда в ответе клетки уменьшится.

Рис. 43. Стимулы разных конфигураций вызывают различные реакции клетки с рецептивным полем такого типа, как А на рис. 42. Отрезком жирной линии внизу указан период (1 секунда), когда был включен стимул — светлая полоса. В первом случае (верхняя запись) показан ответ клетки на полосу оптимальных размеров, положения и ориентации. Во втором случае та же самая полоса покрывает только часть тормозной зоны (поскольку эта клетка не обладает спонтанной активностью, которая могла бы подавляться при торможении, здесь виден только разряд клетки при выключении стимула). В третьем случае полоса ориентирована так, что покрывает только малую часть возбуждающей зоны и соответственно малую часть тормозной зоны, и поэтому клетка не отвечает вообще. На нижней записи показан случай равномерного освещения всего рецептивного поля: ответа здесь тоже нет.

На рис. 42, Б и В показаны рецептивные поля простых клеток двух других типов, которые отвечают наилучшим образом на темные линии и на прямолинейные границы светлого и темного; при этом чувствительность клеток к ориентации стимула остается примерно такой же, как у клеток первого типа. Клетки всех трех типов совсем не реагируют на стимул в виде диффузного освещения. Такое взаимное погашение процессов возбуждения и торможения напоминает реакцию нейтрализации кислоты основанием, которую выполняют студенты в лабораторных работах по химии. Таким образом, уже на этом корковом уровне отмечается большое многообразие нейронов. Если взять класс простых клеток, то у них встречаются три или четыре разных типа рецептивных полей, причем имеются клетки, настроенные на любую из возможных ориентаций стимула, и клетки с рецептивным полем в любом участке поля зрения.

Величина рецептивных полей простых клеток зависит от их расстояния от центральной ямки. Однако в одной и той же зоне сетчатки тоже есть некоторые различия в размерах рецептивных полей. Самые маленькие рецептивные поля, расположенные в центральной ямке и около нее, имеют величину примерно 0,25×0,25°. Что касается клеток типа, показанного на рис. 42, А и Б, то ширина центральной зоны составляет у них не более нескольких угловых минут. Эта величина совпадает с минимальным диаметром рецептивных полей ганглиозных клеток сетчатки или клеток НКТ. Если же взять область далекой периферии, то размеры рецептивных полей простых клеток здесь могут достигать 1×1°.

Рис. 44. Возможная схема связей, определяющих рецептивное поле простой клетки. Четыре клетки образуют возбуждающие синаптические связи с клеткой более высокого порядка. Каждая из клеток низшего порядка имеет рецептивное поле с радиальной симметрией, возбуждающим центром и тормозной периферией (это показано на схеме слева). Центры этих рецептивных полей лежат вдоль прямой линии. Если мы предположим, что с данной простой клеткой соединено много клеток, имеющих рецептивные поля с центром и периферией, причем центры этих рецептивных полей перекрываются и лежат на одной прямой, то рецептивное поле простой клетки будет состоять из длинной, узкой возбуждающей зоны и тормозных флангов. Избегая специальной терминологии, можно просто сказать, что небольшое светлое пятно в любом месте этого длинного и узкого прямоугольника будет приводить к сильному возбуждению одной или нескольких клеток с круглыми рецептивными полями и в результате — активировать, хотя и слабо, простую клетку. Если же стимулом будет длинная узкая полоса, способная активировать все клетки с круглыми рецептивными полями, то это приведет к сильной реакции простой клетки

1 ... 17 18 19 20 21 22 23 24 25 ... 65
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?