Шпаргалка по концепциям современного естествознания - А. Скорик
Шрифт:
Интервал:
Закладка:
52. ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ
Все многообразие окружающей природы состоит из сочетаний сравнительно небольшого числа химических элементов.
Современное представление об элементах сформировалось после открытия Д. И. Менделеевым периодического закона.
Химический элемент – это совокупность атомов с одинаковым положительным зарядом ядра (заряд ядра равен порядковому номеру элемента в таблице Менделеева).
Разновидности одного и того же химического элемента, отличающиеся массой атомов, называются изотопами. Ядра атомов изотопов различаются числом нейтронов. Так, изотопами углерода являются 126C,136C,146C, водорода – 11H (протий), 21H= D (дейтерий) и 31H = T(тритий).
Дейтерий и тритий называются тяжелыми изотопами водорода. Если атом дейтерия или трития входит в состав молекул воды, то масса такой молекулы увеличивается и такая вода называется тяжелой водой. Масса ядра всегда меньше арифметической суммы масс протонов и нейтронов, входящих в его состав. Разность между этими величинами называется дефектом массы. Например, масса ядра гелия 24He (2p, 2п) равна 4,001506 а. с. м., а сумма масс протонов и нейтронов составляет 4,031882, т. е. дефект массы равен 0,030376 а. с. м.
Дефект массы – это энергия, которая выделяется при образовании ядра из свободных протонов и нейтронов. Ее можно вычислить из соотношения Эйнштейна E= mc2. Образование ядра из свободных частиц сопровождается выделением огромного количества энергии. Средняя энергия связи в ядре в миллионы раз превышает энергию связи. Поэтому при химических реакциях веществ ядро не изменяется.
При рассмотрении атомных масс элементов можно заметить, что почти у всех элементов атомные массы дробные. Это объясняется тем, что каждый элемент встречается в природе в виде разных изотопов. При подсчетах учитывается масса того или иного изотопа в земной коре. Относительная атомная масса, приведенная в таблице Д. И. Менделеева, является средней между атомными массами изотопов.
При изучении изотопии стали понятными некоторые отклонения последовательного возрастания относительных атомных масс элементов в Периодической системе. Например, уменьшение атомной массы от аргона (№ 18) к калию (№ 19) объясняется наличием у калия значительного процента легких изотопов, а у аргона – тяжелых. При подсчете средних массовых чисел получается, что у калия это число меньше, чем у аргона. Но величина зарядов ядер этих элементов убедительно подтверждает правильность их расположения в таблице Д. И. Менделеева.
В настоящее время известны более 100 химических элементов. Около 90 из них существуют в природе. Остальные получены искусственно с помощью ядерных реакций.
Распределение элементов в земной коре (средний химический состав земной коры по А. П. Виноградову) таково: кислород – 47,2 % массы земной коры, кремний – 27,6; алюминий – 8,80; железо – 5,1; кальций -3,6; натрий – 2,64; калий – 2,6; магний – 2,10, водород – 0,15 %.
Элементы распространены в земной коре очень неравномерно. Перечисленные 9 элементов составляют 99,79 % массы земной коры, все остальные – 0,21 %.
Распространенность элементов зависит от многих факторов, но в конечном счете определяется вероятностью ядерных реакций их образования и относительной устойчивостью отдельных изотопов.
53. ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА
В основе химии лежат периодический закон и Периодическая система Д. И. Менделеева. Периодическая система элементов является графическим (табличным) изобретением периодического закона.
В современной формулировке периодический закон звучит так: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от зарядов их ядер.
Первый вариант таблицы предложил сам Д. И. Менделеев. Это так называемый вариант длинной формы (периоды располагаются одной строкой). В 1870 г. он опубликовал второй вариант периодической системы – короткую форму (периоды разбиваются на ряды, группы – на подгруппы).
Рассмотрим короткий вариант периодической системы. По горизонтали имеется 7 периодов, из которых первые три называются малыми, а остальные – большими. В 1-ом ряду находится 2 элемента, во 2-ом и 3-ем – по 8, в 4-ом и 5-ом – по 18, в 6-ом – 32, в незавершенном 7-ом – 21 элемент. Кроме 1-го, каждый период начинается с щелочного металла и заканчивается благородным газом.
Каждый элемент Периодической системы имеет свой порядковый номер. Номера элементов называются порядковыми, или атомными, номерами.
Свойства 2-го и 3-го периодов закономерно изменяются от типичного металла до благородного газа. Поэтому Д. И. Менделеев назвал их типическими. Закономерно изменяются в периодах и формы соединений элементов.
В системе 10 рядов. Малый период состоит из одного ряда, а большой период – из двух рядов: четного и нечетного. В четных рядах больших периодов (4-ом, 6-ом, 8-ом, 10-ом) находятся только металлы. В нечетных рядах больших периодов (5-ом, 7-ом, 9-ом)свойства элементов в ряду слева направо изменяются, как у типических элементов.
Степень окисления является основным признаком, по которому элементы больших периодов разделены на два ряда. Их одинаковые значения дважды повторяются в периоде с ростом атомных масс элементов. Формы соединений элементов также повторяются дважды.
В 6-ом периоде за лантаном располагаются по порядку 14 элементов с порядковыми номерами 58–71, называемых лантаноидами. Они помещаются отдельно внизу таблицы, а в клетке указан порядок их расположения La – Lu.
В 7-ом периоде 14 элементов с порядковыми номерами 90-103 составляют семейство актиноидов. Но горизонтальная аналогия у них выражена слабо. В Периодической системе по вертикали расположены 8 групп. Номер группы указывает на степень окисления элементов, которую они проявляют в соединениях. Как правило, номер группы показывает высшую положительную степень окисления. Группа в свою очередь делится на две подгруппы – главную и побочную. Главную подгруппу составляют типические элементы (2-ом и 3-ом периоды) и сходные с ними по химическим свойствам элементы больших периодов. Побочную подгруппу составляют только металлы (элементы больших периодов).
Периодическая система – это система элементов, а из элементов состоит вся живая и неживая природа. Поэтому периодический закон – основной закон природы. Открытие периодического закона оказало огромное влияние на развитие химии и не утратило значения по сей день. Основываясь на Периодической системе, Д. И. Менделеев впервые в истории химии успешно предсказал открытие новых элементов.
54. ХИМИЧЕСКИЕ ПРОЦЕССЫ
Химический процесс – это совокупность процессов, обеспечивающих условия протекания химической реакции. Включают процессы транспортировки реагентов к зоне реакции, продуктов реакции из зоны реакции и др.
Явления, в результате которых не происходит изменения состава ядер атомов, но одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, называются химическими. Существуют различия между физическими и химическими явлениями. При физических явлениях изменяются физическое состояние или форма веществ или образуются новые вещества за счет изменения состава ядер-атомов (ядерные реакции).
Все химические реакции классифицируют по различным признакам.
1. По признаку изменения числа реагентов и продуктов реакции делят на следующие типы: соединения, разложения, замещения и обмена. Реакции, в результате которых образуется одно новое вещество из двух или нескольких, называют реакциями соединения.
Реакцией разложения называется реакция, в результате которой из одного вещества образуется несколько новых веществ.
Реакцией замещения называется реакция между простыми и сложными веществами, в результате которой атомы простого вещества замещают атомы одного из элементов сложного вещества.
Реакцией обмена называется реакция, в результате которой вещества обмениваются своими составными частями, образуя новые вещества.
2. По признаку выделения или поглощения теплоты. Те реакции, которые протекают с поглощением теплоты, называют экзотермическими:
N2(,)+O2(,)= 2NO(,), H0=180,8 кДж.
Реакции, протекающие с выделением теплоты, называют экзотермическими:
2H2 + O2 = 2H2O, H0 = – 571,6 кДж.
3. По признаку обратимости.
Обратимыми называют реакции, которые протекают во взаимно противоположных направлениях. Эти реакции характеризуются тем, что продукты прямой реакции могут взаимодействовать между собой, образуя исходные вещества (обратная реакция).
Необратимыми называют реакции, которые протекают только в одном направлении.
4. По признаку изменения степени окисления атомов, входящих в состав реагирующих веществ.
Степень окисления – это условный заряд атомов в соединении, вычисленный исходя из предположения, что оно состоит только из ионов.