Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Физика » 3a. Излучение. Волны. Кванты - Ричард Фейнман

3a. Излучение. Волны. Кванты - Ричард Фейнман

Читать онлайн 3a. Излучение. Волны. Кванты - Ричард Фейнман
1 ... 16 17 18 19 20 21 22 23 24 ... 30
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Фиг. 36.12. Ответная реакция на свет нервных волокон глаза краба-мечехвоста.

Фиг. 36.13. Ответная реакция омматидия краба-мечехвоста на резкий освещенный край.

Тор­можение оказывается большим, если омматидии расположены ближе, но если они достаточно удалены друг от друга, то тор­можение практически сводится к нулю. Таким образом, тормо­жение аддитивно и зависит от расстояния. Это первый пример, когда информация от различных частей глаза перерабатывается в нем самом. Если подумать немного, то можно понять, что этот механизм предназначен для усиления контраста на краях объекта, ибо если часть предмета освещена, а часть нет, то ом­матидии, направленные на освещенную область, дают импульсы, которые затормаживаются всеми соседними омматидиями, ви­дящими освещенную область, так что они относительно слабы. С другой стороны, омматидии, видящие границу световой области и дающие «белый» сигнал, хотя и подавлены своими со­седями, но тех не столь уж много, ибо некоторые из них совсем темные (не видят света), в результате чего сигнал оказывается более сильным. В итоге получается кривая, подобная изобра­женной на фиг. 36.13. Краб как бы видит «усиленный» контур.

Однако тот факт, что существует такое «усиление» контура, известен уже давно. Это действительно замечательная вещь, которая неоднократно обсуждалась психологами. Чтобы изоб­разить предмет, нам достаточно нарисовать лишь его контур. Ведь мы привыкли видеть картины, на которых изображены одни только контуры! Но что же такое контур? Ведь это просто граница между темным и светлым или между одним цветом и другим. В самом деле, это вовсе не что-то определенное. Мож­но думать, что угодно, но никакой линии вокруг предмета нет! Нет, все это только наша выдумка. Теперь мы начинаем понимать, почему нам достаточно контура, чтобы предста­вить себе весь предмет. По-видимому, наши глаза тоже рабо­тают, подобно глазам мечехвоста, разумеется, гораздо более сложно, но все же аналогично.

Наконец, я вкратце опишу более сложные опыты, очень красивые, и трудные, которые были проделаны над лягушкой. При выполнении их в зрительный нерв лягушки вводились мини­атюрные искусно сделанные нитеобразные зонды и измерялись сигналы, идущие вдоль одного определенного аксона; точно так же как в случае с крабом-мечехвостом, было обнаружено, что информация зависит не просто от одной точки глаза, а является суммой информации, полученных от нескольких частей.

Наиболее современная картина операций на глазе лягушки выглядит следующим образом. Можно найти четыре типа различных зрительных нервных волокон, в том смысле, что сущест­вуют четыре различных сорта ответных реакций. В этих экспериментах не было вспышек света: лягушка не замечает та­ких вещей. Она просто сидит, и глаза ее неподвижны до тех пор, пока листок лилии не начнет двигаться. Тогда глаза лягушки движутся как раз так, чтобы изображение оставалось в поле зрения. Однако сама по себе лягушка глазами не ворочает и не ищет, куда девался объект. Если в поле ее зрения движется что-то, напоминающее небольшое насекомое (нужно, чтобы она могла видеть нечто маленькое, движущееся на неподвижном фоне), то обнаруживаются четыре различных сорта нервных волокон, отвечающих на это раздражение. Их свойства приве­дены в табл. 36.1. Длительное (нестираемое) обнаружение края означает, что если мы внесем предмет с резким краем в поле зре­ния лягушки, то в тех фоторецепторах, мимо которых он дви­жется, возникает множество импульсов, которые переходят затем в редкие импульсы, продолжающиеся до тех пор, пока край находится в поле зрения, даже если он стоит на месте.

Таблица 36.1 · ТИПЫ ОТВЕТНЫХ РЕАКЦИЙ ЗРИТЕЛЬНЫХ НЕРВНЫХ ВОЛОКОН У ЛЯГУШКИ

После выключения света импульсы прекращаются. Если снова включить свет и край предмета по-прежнему находится в поле зрения, то импульсы возникают снова. Они не исчезают. Дру­гой сорт волокон очень похож на первый, но с тем исключением, что они не работают, если край прямой. Нужно, чтобы край был изогнутым! Насколько сложной должна быть система взаимных связей сетчатки глаза лягушки, чтобы видеть движение изогнутой поверхности! Более того, если эти волокна чем-то возбуждены, то возбуждение не может держаться так же долго, как в первом случае, и если мы выключим свет и включим его снова, то импульсы не возобновятся. Впрочем, это зависит от движения выпуклой поверхности. Глаз видит ее движение и помнит, где она находится, но если мы на момент выключим свет, то глаз просто забывает о ней и больше ее не видит.

Следующим типом является регистрация изменения конт­раста. Если край надвигается или отодвигается, то сигналы есть. Но если предмет стоит, то никаких сигналов вообще нет.

Затем есть «регистратор тусклости». Если интенсивность све­та уменьшается, то возникают импульсы, если она неизменна— импульсы прекращаются: регистратор работает, только когда свет тускнеет.

И, наконец, есть несколько волокон, которые служат регист­раторами темноты. Самое удивительное, что они беспрестанно «стреляют»! Если свет усиливается, «выстрелы» становятся более редкими, а если ослабевает, то, наоборот, «огонь» стано­вится более частым, но он не прекращается ни на секунду. В темноте же они «строчат», как сумасшедшие, напоминая пос­тоянно: «Тьма! Тьма! Тьма!»

Все эти реакции кажутся слишком сложными, чтобы их можно было как-то классифицировать. Подозрительно даже, правильно ли истолкованы эксперименты. Но самое интересное, что эти же классы очень отчетливо выделяются самой анатомией лягушки! После того как волокна были расклассифицированы (очень важно, что это было сделано после), другие измерения обнаружили, что скорости импульсов, бегущих по различным волокнам, не одинаковы. Так что был найден другой незави­симый способ определения сорта волокна!

Еще один интересный вопрос: насколько велика анализирую­щая область, связанная с каким-то одним волокном? Ответ ока­зался различным для разных классов волокон.

На фиг. 36.14 показана поверхность так называемой пок­рышки мозга лягушки. Сюда приходят волокна из зрительного нерва. Все эти нервные волокна связаны с различными слоями покрышки. Слоистое строение ее напоминает строение сетчатки (это один из фактов, говорящих нам о том, что сетчатка и мозг весьма похожи друг на друга). Если теперь взять электрод и постепенно перемещать его вниз по слоям, то можно определить, где оканчиваются разные типы зрительных волокон. Опыт дает очень красивый и удивительный результат: оказывается, что различные сорта волокон оканчиваются в различных слоях! В первом слое оканчивается первый тип волокон, во втором — второй; третий и пятый оканчиваются в одном и том же слое, а глубже всех проникает четвертый тип. (Вас не должно удив­лять, что номера их почти совпали с номерами слоев! Именно по­этому они и пронумерованы таким образом, в ранних рабо­тах они нумеровались иначе!)

Фиг. 36,14. Покрышка, мозга лягушки.

Все, что мы узнали, можно кратко сформулировать так: по-видимому, имеются три сорта пигментов. Может быть множество различных сортов рецепторов, в которые эти пигменты входят в различных пропорциях, однако множество внутренних связей позволяет складывать и вычитать эффекты отдельных нервных клеток. Таким образом, прежде чем мы действительно поймем цветовое зрение, необходимо понять конечный этап ощущение зрения вообще. Это все еще открытый вопрос, но исследования с микроэлектродами, возможно, дадут нам в конце концов дополнительные сведения о том, как же мы видим цвета.

*Эти цвета зависят от скорости вращения, яркости освещения и в какой-то степени от того, кто смотрит на диск и насколько пристально.

 

*Человеческий глаз тоже слегка чувствителен к направлению поляризованного света, и научиться угадывать направление солнца в общем можно! Здесь используется явление, называемое хайдингеровской гребен­кой (Haidinger's brush). Это бледное желтоватое пятно в центре поля зре­ния, напоминающее по форме песочные часы; видно оно через поляриза­ционные очки на фоне безграничного бесцветного пространства. Впрочем, его можно видеть и без поляризационных очков на голубом небе, если по­ворачивать голову то туда, то сюда вокруг оси зрения.

Глава 37

КВАНТОВОЕ ПОВЕДЕНИЕ

§ 1. Атомная механика

§ 2. Опыт с пулеметной стрельбой

§ 3. Опыт с волнами

§ 4. Опыт с электро­нами

§ 5. Интерферен­ция электронных волн

§ 6. Как просле­дить за электроном?

§ 7. Начальные принципы квантовой механики

1 ... 16 17 18 19 20 21 22 23 24 ... 30
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈