Категории
Самые читаемые

Звук и слух - Б. Суслов

Читать онлайн Звук и слух - Б. Суслов
1 2 3 4 5 6 7 8 9 10
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

По высоте звука без труда можно определить, идёт ли тяжёлый танк с дизельным мотором или танк лёгкого типа, снабжённый бензиновым мотором. Звук последнего, как правило, более высокий.

Как же доходит до нашего уха возникший где-нибудь звук?

3. Звуковые волны

Бросьте в воду камень. По её поверхности тотчас же разойдутся круговые волны, уходящие всё дальше и дальше от места падения камня. На первый взгляд кажется, что вместе с волной уходят и отдельные частицы воды. Но если бросить на поверхность воды лёгкую щепку, то можно увидеть, что щепка только покачивается вверх и вниз; она в точности повторяет движение окружающих её частиц воды. Когда волна набегает, щепка поднимается вверх — на гребень; волна прошла — и щепка снова возвращается на прежнее место. Она не движется по направлению движения волны, не следует за волной. Значит, и частицы воды, образующие волну, не уходят с ней, а только колеблются вверх и вниз.

На рис. 5 показано, как частицы одна за другой приходят в колебательное движение, образуя волну.

Распространение звука можно сравнить с распространением волны по воде. Только вместо брошенного в воду камня имеется колеблющееся тело, а вместо поверхности воды — воздух.

Рис. 5. Схематическое изображение водяной волны. Стрелками показано направление движения отдельных частиц воды

Пусть источником звука будет камертон. Это — небольшой стальной изогнутый стержень с ножкой на изгибе (рис. 6). Камертоном часто пользуются при настройке музыкальных инструментов. Лёгким ударом по камертону можно заставить его звучать. В первое мгновение после удара ветвь камертона отклоняется, допустим, вправо; при этом она толкает вправо и прилегающие к ней частицы воздуха. Тогда в каком-то маленьком пространстве около камертона воздух окажется сгущённым. Но в таком состоянии частицы воздуха оставаться не могут. Стараясь разойтись, они потеснят своих соседей справа, и сгущение очень быстро передастся от одного слоя воздуха другому. Но и ветвь камертона не останется в покое. В следующий момент она уже отклонится влево и потеснит частицы воздуха с левой стороны. А справа воздух окажется теперь разрежённым. Это разрежение так же, как и сгущение, быстро сообщится всем слоям воздуха.

Рис. 6. Камертон

При следующем колебании повторится та же картина. Таким образом, каждое колебание ветви камертона создаст в воздухе одно сгущение и одно разрежение. Чередование таких сгущений и разрежений и есть звуковая волна. Сколько колебаний совершает камертон, столько отдельных сгущений — «гребней» и разрежений — «впадин» посылает он в воздух. Когда такая волна достигает уха, мы её и воспринимаем как звук.

Однако между водяными и звуковыми волнами есть существенная разница. Водяные волны распространяются кольцеобразно и только по поверхности. Звуковые же волны заполняют всё пространство около звучащего тела. Кроме того, в водяной волне колебания отдельных частиц совершаются вверх и вниз поперёк направления волны, а в звуковой волне частицы колеблются вперёд и назад вдоль волны. Поэтому волны на поверхности воды называются поперечными, а звуковые — продольными.

Но какая бы волна ни была, частицы вещества, участвующие в колебательном движении, никогда не перемещаются вместе с волной. И сама волна — это только передача движения от одной колеблющейся частицы другой.

Понять это ещё лучше помогут кости домино. Поставьте все их в ряд, недалеко друг от друга, и толкните первую кость (рис. 7). Падая, она увлечёт за собой вторую кость, вторая — третью и так далее. Через короткое время все кости будут лежать. Каждая из них осталась на своём месте, а передалось по всему ряду только движение.

Рис. 7. Падающие кости домино напоминают распространение звуковой волны

Точно так же из уст говорящего человека частицы колеблющегося воздуха не летят в уши слушающего, а передаётся лишь движение частиц, образующих отдельные сгущения и разрежения.

Артиллерийские выстрелы мы слышим на расстоянии многих километров также благодаря колебательным движениям отдельных частиц воздуха.

Передача звука на расстояние требует затраты определённой работы. Ведь для того, чтобы возникла звуковая волна, необходимо раскачать частицы воздуха. Однако размах колебаний частиц в звуковой волне ничтожно мал. Давление, которое образуется в местах сгущения волны, не превосходит даже в самом сильном звуке 0, 5 грамма на квадратный сантиметр, а в слабом звуке это давление много меньше давления, оказываемого комаром, севшим на голову человека! Отсюда понятно, что и работа, идущая на создание звуковой волны, очень невелика. Если бы миллион человек одновременно говорили в течение полутора часов, то вся энергия звуковых волн, создаваемых миллионом голосов, была бы достаточна только для того, чтобы вскипятить один стакан воды!

Читатель может спросить: почему же тогда для получения звука приходится тратить значительную работу? Попробуйте дуть некоторое время в свисток, — вы убедитесь, что занятие это не такое уж лёгкое. В сиренах и гудках часто применяется сжатый воздух или пар с давлением в несколько раз больше давления атмосферного воздуха. И, несмотря на такую большую затрату энергии, получаемый звук распространяется на сравнительно небольшое расстояние.

Оказывается, во всех источниках звука только маленькая часть затрачиваемой работы переходит в энергию звука.

Если бы вся энергия гудков и сирен тратилась только на создание звуков, то они были бы слышны на сотни километров! Большинство музыкальных инструментов превращает в звуковую энергию не более одной тысячной доли энергии, затрачиваемой при игре. Человек при разговоре или пении превращает в энергию звука только около одной сотой части совершаемой работы. Остальные 99 частей пропадают, переходя главным образом в тепловую энергию.

4. Проводники звука

Звуковая волна может проходить самые различные расстояния. Так, орудийная стрельба слышна на 10–15 километров, паровозный гудок — на 7-10, ржание лошадей и лай собак — на 2–3 километра, а шёпот — всего на несколько метров. Эти звуки передаются по воздуху.

Но проводником звука может быть не только воздух.

Приложите ухо к рельсам, и вы услышите шум приближающегося поезда значительно раньше и на большем расстоянии, чем этот шум донесётся к вам по воздуху. Значит, металл проводит звук лучше и быстрее, чем воздух.

В хорошей проводимости звука металлами нас убеждает ещё один замечательный опыт. Если к роялю прикрепить один конец металлической проволоки, а другой её конец провести в ту часть здания, куда по воздуху звук игры донестись не может, и соединить этот конец со скрипкой, то звук рояля будет хорошо слышен. При этом создаётся впечатление, что он исходит от скрипки.

Давно замечено хорошее распространение звука и по земле. Известный русский писатель Карамзин в «Истории государства Российского» пишет, как перед Куликовской битвой князь Димитрий Донской сам выехал на разведку в поле и, приложив ухо к земле, услышал конский топот приближающихся татарских полчищ.

Нередко можно видеть странную на первый взгляд картину: машинист или шофёр, взяв деревянную палку, прикладывает один её конец к различным частям мотора, а другой конец — к уху, а иногда берёт эту палку даже в зубы. Пользуясь хорошей проводимостью звука деревом, он прислушивается к шуму отдельных движущихся деталей внутри машины и определяет, хорошо ли они работают.

Вода также хорошо проводит звук. Нырнув в воду, можно отчётливо слышать, как стучат друг о друга камни, как шумит перекатывающаяся во время прибоя галька, как работает машина парохода.

Свойство воды — хорошо проводить звук — широко используется в наше время для звуковой разведки на море во время войны, а также для измерения морских глубин.

Приведённые примеры говорят о том, что звуковая волна может передаваться не только по воздуху или вообще по газам, но и по жидкостям и твёрдым телам.

Для звука есть только одна преграда, и её легко обнаружить очень простым опытом. Если завести будильник и накрыть его стеклянным колпаком, звон будет хорошо слышен. Но если из колпака выкачать воздух, звук умрёт. Почему? Потому что звук не может передаваться через пустоту. И это легко объяснимо. Ведь в пустоте нечему колебаться! Звуковая волна — чередование сгущений и разрежений, — встречая на своём пути пустоту, как бы обрывается.

II. Звуки организованные и неорганизованные

1. Шум

Мы охотно слушаем музыку, пение птиц, приятный человеческий голос. Напротив, тарахтенье телеги, визг пилы, мощные удары молота нам неприятны и нередко раздражают и утомляют.

1 2 3 4 5 6 7 8 9 10
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?