Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Физика » Большое, малое и человеческий разум - Роджер Пенроуз

Большое, малое и человеческий разум - Роджер Пенроуз

Читать онлайн Большое, малое и человеческий разум - Роджер Пенроуз
1 ... 12 13 14 15 16 17 18 19 20 ... 38
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Мне хочется чуть подробнее остановиться на роли математики и некоторых других проблемах, связанных с котом Шредингера. Давайте еще раз рассмотрим ситуацию с котом и попробуем ввести нормировку (вес состояний) при помощи комплексных чисел w и z (рис. 2.9, а). Фотон расщепляется на два состояния, поэтому, если вы серьезно относитесь к квантовой механике и верите в реальность вектора состояний, вам следует также поверить в то, что кот действительно представляет собой некоторую суперпозицию состояний, в которых он одновременно и жив, и мертв. Эти состояния (жизнь/смерть) очень удобно записать через скобки Дирака, как показано на рис. 2.9. Отметьте для себя, что в скобки Дирака коты помещаются точно так же, как обычные символы! В рассматриваемом случае кот не представляет собой целостный объект, поскольку в его описание входят пистолет, фотон и окружение, причем каждый элемент описания представляет собой произведение всех эффектов одновременно (воздух и т. п.), что вы можете представлять в виде некоторой суперпозиции (рис. 2.9, б).

Рис. 2.9.

Каким образом все это можно согласовать в рамках концепции множественности миров? Почему, собственно, рассматривая кота, мы не видим его в виде суперпозиции этих самых состояний? Физики, придерживающиеся теории множественности миров, предлагают для этой ситуации картинку, показанную на рис. 2.9, в, на которой существуют состояния и с живым, и с мертвым котом (в каждом случае со своим наблюдателем). На рис. 2.9, в я и показал такую суперпозицию, поместив в скобки Дирака кота (в двух весьма разных состояниях) и наблюдателя (я попробовал придать его лицу выражение, подобающее квантовому состоянию кота). В рамках концепции множественности миров все сходится, и мы имеем просто копии наблюдателя, однако при этом следует помнить, что обитатели этих картинок живут в «разных мирах», т.е. если вы являетесь одной из этих копий, то другая копия (из параллельного мира) наблюдает за тем, как вы реализуете имеющиеся возможности. Разумеется, вы посчитаете такой метод описания Вселенной не очень удобным и экономичным, однако я думаю, что дела обстоят значительно хуже и трудности вовсе не ограничиваются сложностью или неудобством описания.

Основная проблема состоит в том, что все сказанное фактически оказывается недостаточным для решения поставленной проблемы. Например, остается непонятным, почему наше сознание не воспринимает такие макроскопические суперпозиции. Давайте рассмотрим особый случай, когда величины w и z равны друг другу, т. е. когда состояние системы можно записать в виде некоторого простого алгебраического соотношения, изображенного на рис. 2.10, где показаны живой кот плюс мертвый кот (вместе с наблюдателем, который воспринимает живого кота), плюс наблюдатель, воспринимающий мертвого кота, плюс живой кот, минус мертвый кот вместе с наблюдателем, воспринимающим живого кота, минус наблюдатель, воспринимающий мертвого кота. Вы заявите, конечно, что все эти операции бессмысленны, поскольку они совершенно не похожи на наше восприятие действительности. А почему, собственно, такое описание является неверным? Ведь мы не знаем, что означает слово «восприятие», и не можем отрицать, что оно может подразумевать одновременное восприятие живого и мертвого кота. До тех пор, пока мы не поймем точно, что означает слово «восприятие», и не разработаем достаточно убедительную теорию, запрещающую такое смешанное восприятие (для этого нам необходимо выйти далеко за пределы теории, описанной ниже в гл. 3), предлагаемый подход не позволит нам понять восприятие столь разных состояний или их суперпозиций. Для теоретического описания необходимо иметь хотя бы какую-то теорию восприятия. Кроме того, существующая теория не может объяснить, почему для произвольных чисел w и z получаемые вероятности должны совпадать с квантовомеханическими вероятностями, определенными через квадраты модулей соответствующих величин. Следует помнить, что в конечном счете все эти вероятности должны представлять собой очень точно измеряемые величины.

Рис. 2.10.

Давайте вернемся к проблеме квантовых измерений и, в частности, к вопросу о квантовой запутанности. На рис. 2.11 приведена запись ЭПР-эксперимента в версии Бома, относящаяся, как уже отмечалось, к Z-тайнам квантовой механики. Проблема сводится к возможностям описания состояния двух частиц со спином ½, которые разлетаются в разные стороны. Полный спин системы равен нулю, поэтому, если мы вдруг узнаем, что спин одной из частиц направлен вверх, то из этого следует, что спин второй частицы направлен вниз. В этом случае квантовое состояние полной системы описывается произведением членов «вверх-здесь» и «вниз-там». Аналогично, состоянию «вниз-здесь» соответствует «вверх-там» (подразумевается, что для проекции спина частицы в состоянии «здесь» мы можем выбрать направления вверх/вниз). Для описания квантового состояния полной системы мы должны внести в рисунок знаки плюс-минус для этих положений (буквы Н и Т на рисунке означают «здесь» и «там», соответственно). В сущности, например, нам следовало бы использовать знак минус для того, чтобы полный спин пары частиц равнялся нулю при любом выборе направления проекции.

Рис. 2.11.

Предположим, что мы измеряем спиновое состояние частицы, попавшей в наш детектор «здесь», а вторая частица за это время улетела очень далеко, и точка «там» находится где-то на Луне! Пусть далее мой коллега на Луне включил детектор и измерил проекцию спина в направлении вверх/вниз. Если спин этой частицы направлен вниз, то это означает, что у первой частицы он был направлен вверх, поскольку обычно предполагается, что вектор состояний частицы представляет собой смесь равновероятных состояний (спин-вверх и спин-вниз).

Для описания систем с такими смешанными состояниями в квантовой механике применяется стандартный метод, основанный на использовании так называемой матрицы плотности. В нашем случае матрица плотности, которую должен ввести первый наблюдатель (его можно условно назвать «я/здесь»), имеет вид, показанный на рис. 2.12. Множители ½ в правой части относятся к вероятности обнаружить, что спин «здесь» направлен соответственно вверх и вниз. При этом речь идет о совершенно обычных, классических вероятностях, отражающих степень нашего незнания относительно реального состояния изучаемой частицы. Эти вероятности представляют собой, как обычно, просто действительные числа (лежащие в интервале между 0 и 1), так что комбинация на рис. 2.12 представляет собой стандартную сумму вероятностей с заданным весом, а не сложную квантовую суперпозицию с комплексными коэффициентами. Отметим еще, что величины типа | < и < | (с угловыми скобками, направленными вправо и влево), которые умножаются на соответствующие вероятности (равные ½), были введены Дираком и названы им кет-вектором и бра-вектором, соответственно. В общем случае бра-вектор представляет собой комплексно сопряженный кет-вектор.

Рис. 2.12.

Я не буду рассказывать даже в самых общих чертах о серьезнейшем математическом аппарате теории матриц плотности. Для нашего рассмотрения достаточно знать, что матрица плотности содержит всю информацию, необходимую для расчета вероятностей результатов измерений, производимых над одной частью квантовой системы, в тех случаях, когда информация о другой части квантового состояния недоступна. Например, в нашем случае полное квантовое состояние относится к паре частиц (запутанное состояние), причем предполагается, что при измерении «здесь» мы не можем ничего знать о результатах измерения «там» (на Луне) состояния частицы-партнера.

Я позволю себе немного изменить рассматриваемую ситуацию и предположу дополнительно, что мой коллега на Луне при измерении спина выбрал направление влево/вправо, а не вверх/вниз, как раньше. В этом случае запись состояний примет вид, показанный на рис. 2.13. В сущности, эта запись совпадает с записью рис. 2.11 (та же алгебраическая схема, основанная на геометрии рис. 2.4), однако в ней использованы другие обозначения состояний. В момент измерения мы еще не знаем результатов, полученных коллегой на Луне, однако ясно, что он с одинаковой вероятностью может получить для спина левое направление (в этом случае я должен получить правое направление) или правое (в этом случае я получаю левое). Матрица плотности DH, приведенная на рис. 2.13, при этом будет полностью совпадать с введенной ранее матрицей рис. 2.12. Предлагаемые рассуждения пока кажутся безупречными, поскольку представляется очевидным, что измерения, проводимые коллегой на Луне, не должны изменять вероятностей, получаемых при измерениях на Земле (в противном случае коллега мог бы передавать мне сообщения со скоростью больше скорости света; для этого он мог бы кодировать свои сообщения просто выбором направления регистрации).

1 ... 12 13 14 15 16 17 18 19 20 ... 38
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈