Категории
Самые читаемые
ChitatKnigi.com » 🟠Детская литература » Детская образовательная литература » В поисках похищенной марки - Владимир Левшин

В поисках похищенной марки - Владимир Левшин

Читать онлайн В поисках похищенной марки - Владимир Левшин
1 ... 12 13 14 15 16 17 18 19 20 ... 33
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

— Меридианы пересекаются на географическом полюсе, — сказал Олег, — а магнитный полюс, на который указывает стрелка компаса, чуть-чуть с ним не совпадает. Так что смешивать полюс географический с магнитным не стоит… Но вернёмся всё-таки к Единичкиной задаче. По-моему, очень любопытная задача.

— Не такая уж, наверное, любопытная, если Магистр решил её единым махом, — сказал президент пренебрежительно.

— Решил, да неправильно. Ведь девять в кубе — это 729, а сумма шести в кубе и восьми в кубе всего только 728.

— Не придирайся! — заартачился Нулик. — Подумаешь, ошибся человек на единицу! Можно, поди, подобрать и такие три числа, чтобы куб одного был в точности равен сумме кубов двух других.

— В том-то и дело, что нельзя.

— Это почему же?

Олег развёл руками.

— Прошу прощения, ваше президентство, но тут дело тонкое.

Президент обернулся в мою сторону:

— Правда?

Я кивнул.

— Да, брат, ты коснулся проблемы, над которой бились многие талантливые учёные, а все без толку… Точнее, почти без толку. Эта проблема известна под именем великой теоремы Ферма. В молодости я очень ею увлекался…

Глаза президента сверкнули.

— Расскажите! — потребовал он.

— Расскажите, расскажите! — поддержали остальные.

— Но для этого потребовалось бы целое заседание, — беспомощно отнекивался я.

— В таком случае, — объявил президент, — назначаю на послезавтра внеочередное заседание КРМ, посвящённое великой теореме Ферма!

Этим широковещательным анонсом и закончилось наше сборище.

ВНЕОЧЕРЕДНОЕ ЗАСЕДАНИЕ КРМ,

героем которого был я, естественно, происходило у меня дома. Когда все уселись, я начал свой рассказ без всякого предисловия.

— Представьте себе, что сейчас 1923 год. Москва, Замоскворечье. У крыльца одноэтажного домика стоит юноша и гадает: нажать кнопку звонка или вернуться подобру-поздорову домой? Этот юноша — я.

А в старом одноэтажном особнячке живёт кудесник — заслуженный профессор математики Александр Васильевич Васильев. Боже мой, какие замечательные книжки написал этот человек! Вот только что вышла его последняя работа: «Целое число». Эту книгу можно читать не отрываясь, забыв обо всём на свете, словно то не сухая математика, а по крайней мере…

— … «Три мушкетёра»! — подсказал Нулик.

Таня сделала ему страшные глаза, и он смущённо умолк.

— Подумать только, числа, которые ты всегда забывал и путал, потому что они все на одно лицо, — эти числа, оказывается, имеют самые различные характеры, привязанности, капризы. Потому и названия у них такие необыкновенные: совершенные, дружественные, мнимые… А вот числа, которые называются простыми, на самом деле не так просты. Хотя Эвклид доказал, что числам этим несть числа, а всё-таки до сих пор никто не может докопаться, по какому закону они распределяются среди других натуральных чисел. Да, числа — народ загадочный. Но Александр Васильевич Васильев с ними на короткой ноге. Из его-то книги и узнал я впервые о великой теореме Ферма. На первый взгляд теорема кажется совершенно простой. Но доказательство её так и не найдено. И это несмотря на то, что искали его многие замечательные математики последних трех столетий. Достаточно упомянуть хотя бы петербургского академика Леонарда Эйлера, соратника великого Ломоносова. Правда, поиски Эйлера всё-таки увенчались некоторым успехом — он доказал справедливость теоремы Ферма для частного случая.

— Что ж это за неуловимая теорема такая? — снова не удержался президент.

— Сейчас объясню. Вы ведь уже, кажется, знаете, что всегда можно подобрать целые числа так, чтобы сумма квадратов двух из них была равна квадрату третьего.

— Да, да, — встрепенулся Сева, — например, 3^2+4^2=5^2.

— Или 5^2+12^2=13^2, — добавила Таня.

— Совершенно верно, — подтвердил я. — Таких числовых троек бесконечно много. Между прочим, равенство a^2+b^2=c^2 связывается обычно с теоремой Пифагора. Что же касается Севиного примера — 3, 4 и 5, то эта тройка чисел была известна ещё в Древнем Египте, более 4000 лет назад.

Но вот, оказывается, нельзя подобрать три целых числа, чтобы сумма кубов двух из них равнялась кубу третьего. Подобрать их нельзя также и для четвёртой, и для пятой, и вообще для любой другой степени. Иначе говоря, равенство a^n+b^n=c^n невозможно, если n больше двух. Это и есть великая теорема Ферма, возникшая в первой половине семнадцатого века. Французский юрист и математик Пьер Ферма изложил её на полях книги «Арифметика», написанной древнегреческим математиком Диофантом, который жил более чем за 1000 лет до Ферма.

— А сам-то Ферма доказал свою теорему? — спросил Нулик.

— По его собственным уверениям, доказал. Мало того, он утверждал, что доказательство необычайно интересное. Но никаких следов этого доказательства не осталось. Во всяком случае, на полях Диофантовой книги его нет. То ли потому, что, по словам самого Ферма, там не хватило места для подробных рассуждений, то ли сам Ферма впоследствии усомнился в правильности своего доказательства… Так или иначе, тайна теоремы Ферма остаётся тайной по сей день.

— А может быть, теорема неверна? — робко заикнулся Сева.

— Опровергнуть её пока что тоже никому не удалось. И едва ли удастся. Надо полагать, теорема всё-таки справедлива. Но речь не об этом, а о том, что обманчивая простота теоремы Ферма привлекла к ней внимание множества людей. Доказательства сыпались как из рога изобилия. Особенно усилился их наплыв после того, как дармштадтский математик Вольфскель завещал 100000 марок Гёттингенскому обществу наук с тем, чтобы деньги эти были вручены счастливцу, доказавшему теорему Ферма.

— А что, может, и мне попытать счастья? — воодушевился Нулик.

— Дело хозяйское, но скажу сразу: надежды мало. Погорели на этом многие, и курьёзов было тьма! Вот, например, в одном журнале условие теоремы было записано неправильно: вместо того чтобы написать, что показатель степени должен быть больше двух, там было написано так:

a^n+b^n = c^n (n+2).

И нашёлся-таки чудак, который на основании этой опечатки опроверг теорему и потребовал немедленного денежного вознаграждения.

— Но ведь вы сами говорили, что доказательством теоремы Ферма занимались и крупные математики, — подцепил меня Сева.

— Не отрицаю, говорил. Теорему пытались доказать многие известные учёные. И некоторые из них, хоть и не доказали её полностью, внесли все же существенный вклад в это дело. Начать с самого Ферма, который доказал свою теорему для частного случая n=4. Кроме того, я уже говорил, что в середине восемнадцатого века справедливость теоремы для третьей степени доказал Леонард Эйлер. В середине следующего, девятнадцатого века гёттингенский математик Лежён Дирихле нашёл доказательство и для пятой степени. А в конце того же девятнадцатого века расширил доказательство для всех простых чисел первой сотни немецкий математик Эрнст Эдуард Куммер. Для этого ему пришлось придумать новый метод исследования, который получил название алгебраической теории чисел. В наши дни этот метод успешно развивают многие математики.

Но вернёмся всё-таки в 1923 год, к началу моего рассказа. После всего, что я сейчас говорил, вам, конечно, ясно, как самонадеянно с моей стороны было явиться к профессору Васильеву с моим доморощенным «доказательством» теоремы Ферма. И всё-таки я позвонил.

Небольшой полутёмный кабинет с низким потолком был весь заставлен мебелью и книгами. В углу уютно поблёскивала изразцами голландская печь. За громоздким письменным столом сидел седой коренастый человек с пышной бородой и на редкость добрыми глазами. Помню, больше всего поразило меня то, что не было в нём никакой профессорской важности. Несмотря на мою молодость, он держался со мной на равной ноге.

Александр Васильевич взял протянутую мною рукопись и стал её быстро просматривать. В некоторых местах он задерживался и, вытянув губы, слегка покачивал головой. Затем очень мягко, почти виновато сказал, что я допустил ошибку в логическом построении доказательства. Ошибку совсем незначительную, но… если её исправить, то доказательства уже не получится.

— До чего симпатичный старик! — умилился президент.

— Удивительно симпатичный! — согласился я. — Конечно, я расстроился, а он стал меня утешать, говорил, что огорчаться не стоит, что ход мыслей у меня очень интересный и мне следует продолжать заниматься. И добавил, опустив глаза: «Только не теоремой Ферма, а вообще числами». Прощаясь, он долго держал мою руку в своей и глядел на меня так ласково, будто хотел сказать: «Не отчаивайтесь! Бывают в жизни и большие неприятности».

Это была моя первая и, к сожалению, последняя встреча с Васильевым. Она заставила меня ещё сильнее влюбиться в числа. Но, вопреки советам профессора, работы над теоремой Ферма я не оставил и продолжал искать свою синюю птицу.

— Какую птицу? — переспросил Нулик.

1 ... 12 13 14 15 16 17 18 19 20 ... 33
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈