100 знаменитых ученых - Александр Фомин
Шрифт:
Интервал:
Закладка:
«Книга о восстановлении и противопоставлении» в основном посвящена решению уравнений первой и второй степени и применению математических законов на практике. Вот, к примеру, цитата, хорошо демонстрирующая практическую направленность книги: «Наиболее легкие и полезные навыки арифметики, например, то, что постоянно требуется человеку в делах наследования, получения наследства, раздела имущества, судебных разбирательствах, торговых отношениях или при измерении земельных участков, рытье каналов, геометрических вычислениях, а также в других случаях». Не удивительно, что неизвестное в уравнении автор называет «вещью», а его квадрат – «имуществом».
Вначале своей книги Хорезми дает определение натуральным числам и рассматривает десятичную систему исчисления: «Когда я поразмыслил над тем, что люди в основном пытаются найти в результате вычислений, я понял, что это всегда некое число. Также я отметил, что каждое число состоит из разрядов и может быть разделено на разряды. Более того, я обнаружил, что каждое число от 1 до 9 может быть выражено одной цифрой. Далее десятки удваиваются и утраиваются, также, как ранее единицы. Так появляются «двадцать», «тридцать» и так далее до ста. Затем, подобно единицам и десяткам, удваиваются и утраиваются сотни до тысячи;… и так далее до последнего предела исчисления».
Конечно, современному человеку, с раннего детства знакомому с десятичной системой, подобные объяснения могут показаться наивными, но во времена Хорезми далеко не для всех эта система была так очевидна. Кроме того, в данном случае ценность представляет не само объяснение, а обобщение, которое делает автор.
Далее Хорезми пишет о методах решения различных уравнений. Он приводит все уравнения к одной из шести стандартных форм:
– квадраты равны корням: ax2 = bx;
– квадраты равны числам: ax2 = c;
– корни равны числам: bx = c;
– квадраты и корни равны числам: x2 + bx = c;
– квадраты и числа равны корням: x2 + c = bx;
– корни и числа равны квадратам: x2 = bx + c.
Приведение уравнений автор предлагает осуществлять методами «аль-джебр» и «валь-мукабала» (восстановления и противопоставления). Под восстановлением он понимает перенесение вычитаемых членов из одной части уравнения в другую, под противопоставлением – сокращение в обеих частях уравнения равных членов.
Например, рассмотрим уравнение:
x2 + 5x – 7 = 9x.
После операции восстановления, уравнение примет вид:
x2 + 5x = 9x + 7
Теперь, применив противопоставление, получаем:
x2 = 4x + 7.
Для уравнений вида x2 + с = bx Хорезми приводит такое решение:
x = b/2 +-√ ((b/2)2 – c),
при этом он указывает, что решение невозможно, если c > (b/2)2.
Конечно же, в наше время такие преобразования откровением не являются. Кроме того, на первый взгляд, человеку, хоть чуть-чуть знакомому с математикой, процедура восстановления вообще в ряде случаев покажется бессмысленной. Но тут нужно учитывать несколько обстоятельств. Нельзя забывать о том, что все свои вычисления Хорезми проводил в словесной форме, без использования математических знаков. Естественно, что это серьезно усложняло сам процесс вычислений и математических преобразований. Что же касается приема «восстановление», то его введение, скорее всего, продиктовано двумя факторами. Математики времен Хорезми не признавали существование отрицательных величин. «Восстановление» позволяло привести уравнение к такому виду, чтобы обе его части были положительными. Кроме того, с помощью этого приема уравнения можно было привести к одному из шести канонических видов, алгоритм решения которых заранее известен. Таким образом, можно сказать, что, предложив свои алгебраические методы решения уравнений, Хорезми смог свести большинство задач к некоей стандартной форме, абстрагируясь от конкретных условий.
Затем математик знакомит читателя с алгоритмами решения уравнений, приведенных к стандартному виду. Решать подобные задачи умели еще древнегреческие ученые. Но они делали это исключительно с помощью геометрических методов. Одна из основных заслуг Хорезми состоит в том, что он в своей работе впервые стал пользоваться исключительно алгебраическими методами, приводя геометрические решения уравнений только для доказательства правильности своих вычислений.
Далее Хорезми рассматривает возможность применения арифметических действий к алгебраическим выражениям. Например, он демонстрирует, каким образом следует умножать выражение типа: (a + bx) (c + dx).
Следующая часть «Книги о восстановлении и противопоставлении» содержит примеры использования методов, изложенных выше, для вычисления площадей и объемов геометрических фигур и тел.
Заключительный раздел книги еще раз подчеркивает ее практическую направленность. В нем рассматриваются сложные исламские законы наследования имущества. Правда, с точки же зрения математики этот раздел особого интереса не представляет, так как используемые в нем расчеты редко выходят за рамки линейных уравнений.
К числу достоинств «Книги о восстановлении и противопоставлении» следует отнести и более точное, чем у предшествующих авторов, определение числа я. Так Архимед для определения значения этой константы пользовался отношением: 22/7 (3,1429). Индусы использовали еще более грубое приближение: √10 (3,1623). Хорезми использует гораздо более точное значение числа π: 3,1416. Как видим, это значение в точности совпадает с истинным (3,141592), принимая во внимание округление до четырех знаков после запятой. Правда, исследователи полагают, что это значение получено не самим Хорезми, а взято им из какого-то более раннего, скорее всего, греческого источника.
Помимо «Китаб аль-джебр валь-мукабала» до наших дней дошли сведения еще о нескольких трудах Хорезми. Так, он написал трактат об индо-арабских цифрах. В этой работе Хорезми описывает индусскую систему исчисления, основанную на использовании цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0. Вероятно, именно Хорезми впервые использовал ноль в качестве обозначающего разряд символа. Оригинальный текст этой книги был утерян, и она дошла до нас в латинском переводе «Algoritmi de numéro Indorum». Именно благодаря этому переводу имя Хорезми и превратилось, как мы уже упоминали, в термин «алгоритм».
(adsbygoogle = window.adsbygoogle || []).push({});