Ритм Вселенной. Как из хаоса возникает порядок - Стивен Строгац
Шрифт:
Интервал:
Закладка:
Признав, что решить проблему связи между осцилляторами было бы невероятно трудно, Уинфри попытался уклониться от вопросов связи и решить простейший вариант этой задачи[41]. Что произойдет, размышлял он, если каждый осциллятор подвергается одинаковому воздействию со стороны всех остальных осцилляторов? Это было похоже на то, как если бы каждый бегун одинаково реагировал на крики всех остальных бегунов, а не только на крики тех, кто бежит рядом с ним. Или, если воспользоваться более реалистичной аналогией, представьте, что вы сидите в переполненном зрительном зале по завершении восхитительного концерта. Если зрители начнут аплодировать в унисон, вас увлечет оглушительный ритм хлопков всего зала, а не пары, сидящей рядом с вами.
Уинфри составил уравнения для своей системы осцилляторов, описывающие, как быстро каждый из этих осцилляторов будет проходить свой цикл. В любом случае скорость осциллятора определяется тремя факторами: предпочтительным для него темпом, который пропорционален его естественной частоте; его текущей чувствительностью к любым внешним воздействиям (которая зависит от того, в какой точке своего цикла он находится в данный момент); и совокупным влиянием, оказываемым всеми остальными осцилляторами (которое зависит от того, в какой точке своего цикла находятся все эти осцилляторы). Это поистине колоссальный объем «математической бухгалтерии», но, в принципе, поведение такой системы в целом на протяжении всего времени определяется текущими местоположениями всех осцилляторов. Иными словами, полное знание текущего момента позволяет полностью предсказать будущее – по крайней мере в принципе.
Соответствующее вычисление осуществляется методически. Зная текущие местоположения всех осцилляторов, мы можем с помощью уравнений Уинфри вычислить их мгновенные скорости. Эти скорости говорят нам о том, как далеко каждый из осцилляторов продвинется на следующем этапе. (Мы исходим из того, что этап представляет собой очень короткий интервал времени и что в течение этого времени все осцилляторы продвигаются неуклонно. В этом случае расстояние, преодолеваемое каждым осциллятором за время цикла, равняется его скорости, умноженной на время цикла.) Таким образом, все осцилляторы могут теперь продвинуться к своим новым фазам, а указанное вычисление повторяется снова и снова, каждый раз продвигаясь вперед на один этап. Если итерации этого процесса выполнять достаточно долго, то, по крайней мере концептуально, мы увидим, какая судьба ожидает эту совокупность осцилляторов.
То, что я только что описал, называется системой дифференциальных уравнений. С такими уравнениями нам приходится иметь дело каждый раз, когда правила для скоростей зависят от текущих положений. Задачи, подобные этой, изучаются еще со времен Исаака Ньютона (поначалу в связи с движением планет в Солнечной системе). В этом случае каждая планета притягивает все другие планеты, изменяя их местоположения, что, в свою очередь, изменяет гравитационные силы, действующие между ними, и т. д. – зеркальное отражение, во многом похожее на осцилляторы Уинфри с их постоянно изменяющимися фазами, а также с их силами воздействия и чувствительностью. Ньютон изобрел дифференциальное исчисление именно для решения сложных проблем, подобных рассматриваемой нами. Являясь автором одного из величайших достижений западной науки, он решил так называемую «задачу о двух телах» и доказал, что орбита Земли вокруг Солнца является эллиптической, как было предсказано Кеплером до него. Интересно, однако, что «задача о трех телах» оказалась совершенно неподъемной. На протяжении двух столетий лучшие математики и физики мира пытались найти формулы, описывающие движение трех притягивающих друг друга планет, но лишь в конце XIX века французский математик Анри Пуанкаре доказал тщетность таких попыток: таких формул нет и быть не может.
С тех пор мы осознали, что большинство систем дифференциальных уравнений не имеет решения в том же самом смысле: невозможно найти формулу, которая позволяла бы получить ответ. Однако существует одно замечательное исключение: для линейных дифференциальных уравнений есть решение. Технический смысл слова линейные на данном этапе не должен интересовать нас; гораздо важнее для нас то обстоятельство, что линейные уравнения модульны по своей природе. То есть большую и запутанную линейную задачу всегда можно разделить на меньшие и более обозримые части. Каждую такую часть можно решить по отдельности, а полученные таким образом «маленькие ответы» можно воссоединить для решения более крупной задачи. Поэтому утверждение о том, что в линейной задаче целое равняется в точности сумме его частей, вообще говоря, верно.
Проблема, однако, в том, что линейным системам присуще лишь весьма примитивное поведение. Распространение инфекционных заболеваний, сильная когерентность лазерного луча, взбаламученное движение турбулентной жидкости – все эти явления описываются нелинейными уравнениями[42]. Когда целое отличается от суммы его составных частей (когда имеет место сотрудничество или конкуренция), уравнения, описывающие соответствующие явления, должны быть нелинейны.
Таким образом, вряд ли приходится удивляться тому, что когда Уинфри взглянул на свои дифференциальные уравнения для биологических осцилляторов, он увидел, что они нелинейны. Все линейные методы, о которых ему рассказывали на лекциях по физике и прикладным дисциплинам, в данном случае были неприменимы: он никогда не сможет найти формулы для решения этой задачи. Что же касается нелинейных методов, то те немногие, которые имелись в его распоряжении, были пригодны лишь для очень небольших систем, таких как отдельно взятый осциллятор или два связанных осциллятора. Для задачи, решение которой он пытался найти (динамика популяции, насчитывающей тысячи нелинейных осцилляторов, взаимодействующих между собой), нужно было придумать особый подход.
Чтобы имитировать работу своей модели, Уинфри использовал компьютер. То есть вместо использования чисто математического аппарата ему предстояло провести что-то наподобие эксперимента. Компьютер должен был отслеживать поведение осцилляторов по мере прохождения ими цикла за циклом с их переменными скоростями. Машине было все равно, о каких объектах – линейных или нелинейных – идет речь. От нее лишь требовалось постепенно, шаг за шагом, продвигаться вперед, обеспечивая достаточно надежную аппроксимацию истинного поведения модели, предложенной Уинфри. Уинфри надеялся, что полученные результаты подскажут ему, как должны вести себя осцилляторы. По крайней мере он мог бы увидеть, что должно происходить, даже если ему было не вполне понятно, почему это происходит именно так, а не иначе.
Вообще говоря, легко понять один ограниченный случай. Если осцилляторы полностью игнорируют друг друга, они распределяются по всей круговой дорожке, поскольку каждый из них «бежит» с предпочтительной для себя скоростью, а остальные осцилляторы не влияют на него. Более быстрые осцилляторы перегоняют более медленные осцилляторы и со временем обгоняют их на целый круг. На достаточно продолжительном отрезке времени осцилляторы будут распределены по всей дорожке. Говорят, что такая система некогерентна. Это похоже на то, как аплодируют зрители на концертах в Америке. Каждый из американских зрителей аплодирует сам по себе, не обращая внимания на соседей, – в том ритме, который подходит именно для него. В совокупности это похоже на устойчивый аритмичный шум.
Эксперименты с имитацией, проводившиеся Уинфри, зачастую приносили результаты, напоминающие именно этот вид некогерентности, даже когда осцилляторам предоставлялась возможность влиять друг на друга. При разных сочетаниях функций чувствительности и влияния популяция активно противодействовала синхронизации. Даже если все осцилляторы начинали работу строго синфазно, они нарушали согласованность своих действий и дезорганизовывались. Эта популяция настаивала на анархии.
Но в случае других пар функций чувствительности и влияния Уинфри обнаружил, что эта популяция самопроизвольно синхронизируется. Какими бы ни были начальные фазы осцилляторов, некоторые из них всегда слипались в прочный ком и бежали круг за кругом дружной компанией. В этом случае популяция вела себя подобно восточноевропейской зрительской аудитории, которая совершает синхронные хлопки без каких-либо видимых подсказок.
В подобных случаях синхронизация наступала в результате «сотрудничества» осцилляторов. Как только несколько осцилляторов входили в синхронизм (возможно, по чистой случайности), их совместные, когерентные «выкрики» начинали выделяться на фоне остального шума и оказывать более сильное влияние на все остальные осцилляторы. Это ядро начинало вербовать в свои ряды другие осцилляторы, в результате чего оно разрасталось и усиливало свой сигнал. Результирующий процесс положительной обратной связи приводил к самопроизвольному, все более ускоряющемуся процессу синхронизации, в ходе которого многие осцилляторы стремились присоединиться к формирующемуся консенсусу. Тем не менее некоторые осцилляторы оставались несинхронизированными, поскольку их естественные частоты слишком выбивались из общего ряда, чтобы их можно было вовлечь в процесс установления синхронизма. В конечном счете популяция разделялась на синхронизированную совокупность и дезорганизованную группу осцилляторов-экстремистов.