Категории
Самые читаемые

Зеркальный мир - Вернер Гильде

Читать онлайн Зеркальный мир - Вернер Гильде
1 ... 11 12 13 14 15 16 17 18 19 ... 41
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

В соответствии с законами оптики рыба может (вероятно) видеть стоящего в воде рыбака парящим в воздухе

В одной старой книге содержится прекрасное описание опыта, оно так удачно, что заслуживает внимания и современного читателя.

«Картина, увиденная под водой. Пословицу «не всему верь, что слышишь», следовало бы продолжить, прибавив утверждение, что нельзя принимать за правду все, что видишь. Из всех оптических обманов нет более невероятного, более поразительного, чем зрелище рыбака, каким его видит рыба».

Рассмотрим сначала обратный случай: как удильщик видит щуку. Луч его зрения преломляется на поверхности воды. Голландец Снеллиус, с которым мы уже познакомились, рассматривая падающие на зеркало и отраженные от него лучи, открыл в 1620 г. закон преломления. Он показал, что луч света, проходящий через две прозрачные среды (воздух, вода), изменяет свое направление на определенный угол, Величина этого угла зависит от отношения показателей преломления обеих сред и от угла падения луча. В виде уравнения этот закон выглядит следующим образом:

синус угла падения/синус угла отражения=nB/nA=показатель преломления среды B/показатель преломления среды А

Если вы посмотрите на чертеж, то заметите, что вертикально падающий луч, достигая границы сред, проходит, не преломляясь. Если же луч падает косо, он преломляется. Угол преломления изменяется быстрее, чем угол падения, в том случае, если луч переходит из оптически более плотной среды в менее плотную. В какой-то момент падающий луг попадает на границу сред (например, воды и воздуха) под таким углом, что его синус будет равен отношению nB/nА=1, в данном случае пв воздуха равно 1. Тогда и синус падения должен быть равен 1, а 1=sin 90°, то есть преломление в этом случае направлено параллельно границе сред. Если угол падения будет еще более пологим, выходящий луч отразится согласно закону: угол падения равен углу отражения.

При переходе в оптически более плотную среду преломленный луч света отклоняется к вертикали, а при переходе из оптически более плотной в менее плотную среду - от вертикали

Мы столкнулись здесь с прекрасным примером того, как один закон оптики переходит в другой через граничное значение. Однако показатель преломления, кроме того, зависит от длины волны излучения. Дневной свет состоит из смеси волн разной длины - от фиолетовых до красных. Так как для каждой длины волны существует свой показатель преломления, «белый свет» на границе двух сред «разлагается», и мы видим цвета радуги.

Однако вернемся к нашему рыбаку. Луч его зрения, падая на поверхность воды, преломляется. Поэтому рыба вида гея удильщику совсем не там, где она находится в действительности, точно так же, как и его собственные ноги: они кажутся рыбаку «подломленными» у поверхности воды.

А теперь представим себя на месте рыбы. Ноги удильщика она видит непосредственно. Но если рыба находится на достаточном удалении (где и должна быть всякая осторожная рыба), то она видит еще и отражение ног от зеркальной поверхности воды.

Два зеркала поставлены под углом друг к другу. Углы между зеркалами представляют собой результат деления 360° на целые числа, то есть 120, 90, 60 и 45°. В зависимости от числа, на которое производится деление, мы видим кувшин 3, 4, 6 и 8 раз. Обратите внимание на то, что кувшин совершает в зеркале 'полный оборот'

Верхняя часть тела удильщика видна ей через границу поверхностей воды и воздуха. И тут, разумеется, справедливы физические законы (они ведь действуют независимо от того, знает о них рыба или нет!). Следовательно, луч зрения рыбы преломляется, так что она видит верхнюю часть туловища рыбака висящей в воздухе без ног. Говоря «видит», мы имеем в виду, что именно такое изображение возникает на сетчатке глаза. Процессов, происходящих при этом в мозгу, мы не касаемся. Нам вряд ли удастся проверить, что думает по этому поводу рыба, но что мы можем думать сами в подобных обстоятельствах, установить не составляет труда.

Принцип действия зеркального у глав калейдоскопе. Только 8 фишек на переднем плане 'истинные', все остальные фишки - их отражения в зеркальных углах

Не случайно в уже упомянутой книге (написанной Артуром Л. Фили) приводится доказательство того, что мы не всегда правильно судим о том, что видим «собственными глазами». Модный некогда цилиндр как нельзя лучше показывает, сколь легко мы можем ошибаться: наш рассудок просто не хочет «верить», что высота и ширина тульи этого головного убора одинаковы.

Оптический обман: высота тульи цилиндра равна ее ширине

Если пример с цилиндром покажется вам не очень убедительным, вспомните, как черное платье делает женщину стройнее, а подчеркнутая талия (как и сужение на тулье цилиндра) зрительно увеличивает ее рост.

ОБ ИСКАТЕЛЯХ СОКРОВИЩ

Однажды, будучи в Австралии, я увидел лавочку, где торговали снаряжением специально для искателей сокровищ. Это было в Сиднее, на маленькой улочке, огибающей небольшой парк.

В магазинчике продавались заступы, широкие лопаты, сита, ведра, молотки и прочие необходимые на этот случай предметы. Искателям приключений оставалось только, прихватив все это добро, отправиться в Австралийскую пустыню, чтобы рыть там шурфы в поисках золота, руды или драгоценных камней. Правда, прежде, как предупреждает висящее над прилавком объявление,будущие миллионеры должны обзавестись соответствующей лицензией на ведение разведки. (Такие лицензии выдаются желающим и по сей день.)

Чтобы искатели счастья точно знали, куда им надлежит держать путь и с чего именно начать, здесь же продаются карты и образцы пород и минералов. Истинные искатели сокровищ, очевидно, уже обзавелись всем необходимым, ибо, кроме меня, покупателей в магазине не было. Владелец продал мне за 25 центов образчик агата. К более крупным торговым операциям он, по-видимому, неособенно привык. Ведь серьезными поисками драгоценных минералов занимаются специалисты, а разработкой их месторождений - крупные концерны.

Два зеркала, составленные углом, показывают нам свечу троекратно

Но, чтобы ощутить себя в роли искателя подземных сокровищ, гражданину Германской Демократической Республики можно и не ездить в далекую Австралию. Прихватив средней величины молоток, он отправляется в Рудные горы в район Шенек - Клингенталь. На любой туристской карте обозначен Шнекенштейн. Добраться туда можно и пешком, и на машине - в зависимости от желания. В нескольких метрах возле шоссе среди деревьев возвышается скальный выход величиной с дом. Это Шнекенштейн - одно из немногих мест в Европе, где можно найти топазы. Чтобы и наши потомки могли еще увидеть кусочек интересного геологического ландшафта, скала объявлена заповедной. Проволочная сетка охраняет ее от молотков искателей топазов. Однако рядом с охраняемым участком находится большой каменный отвал, оставшийся от прежних разработок. Осторожно раскалывая молотком камни величиной с голову или с кулак, среди осколков можно обнаружить мелкие желтоватые кристаллы со стеклянным блеском. Чаще всего это кристаллы кварца, но среди них может попасться и топазик. После нескольких часов кропотливого труда счастливчикам случается стать обладателем полного спичечного коробка кристалликов. Только как отличить топаз от кварца?

Прежде всего по твердости. Топаз будет царапать кварц.

Австрийский минералог Фридрих Моос, современник Гёте, ювил в 1812 г. шкалу твердости минералов. Он выбрал довольно произвольно десять минералов и расположил их в ряд. Оказалось, что тальк, твердость которого была позже принята за 1, царапают все остальные минералы этого ряда. Алмаз способен сам царапать все минералы, а потому его твердость была принята за 10. Кварц по этой шкале имеет твердость 7, и его царапает топаз, твердость которого равна 8. Кристаллограф распознает эти минералы еще и по их принадлежности к различным кристаллографическим системам. Топаз обладает более низкой симметрией, чем кварц, так что эти минералы четко различаются и по форме кристаллов.

Так выглядит топаз в природной огранке, извлеченный из пустот в кварце

Сравнивая форму идеального природного кристалла топаза и искусственно ограненного, мы видим, что между их естественными гранями и искусственной огранкой нет никакой связи.

Драгоценные камни, как правило, обрабатываются без учета их кристаллографической ориентировки. Гранильщик преследует две главные цели. Во-первых, он стремится, чтобы камень по возможности сохранил свои размеры. Это и определяет выбор формы огранки. Во-вторых, ему хочется нанести предельное количество граней. Ведь чем больше граней, тем многократнее камень отражает свет и тем сильнее сверкает (вспомните о зеркальных углах!).

1 ... 11 12 13 14 15 16 17 18 19 ... 41
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?