Категории
Самые читаемые
ChitatKnigi.com » 🟢Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ГЕ) - БСЭ БСЭ

Большая Советская Энциклопедия (ГЕ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (ГЕ) - БСЭ БСЭ
1 ... 145 146 147 148 149 150 151 152 153 ... 277
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

  С геометрической точки зрения многообразие пространства — времени обычно трактуется в общей теории относительности как неоднородное римановского типа, но с метрикой, определяемой знакопеременной формой, приводимой в бесконечно малой области к виду

  dx2 + dy2 + dz2 — c2dt2

  (с — скорость света в вакууме). Само пространство, поскольку его можно отделить от времени, оказывается также неоднородным римановым. С современной геометрической точки зрения лучше смотреть на теорию относительности следующим образом. Специальная теория относительности утверждает, что многообразие пространства — времени есть псевдоевклидово пространство, т. е. такое, в котором роль «движений» играют преобразования, сохраняющие квадратичную форму

  x2 + y2 + z2 — c2t2

  точнее, это есть пространство с группой преобразований, сохраняющих указанную квадратичную форму. От всякой формулы, выражающей физический закон, требуется, чтобы она не менялась при преобразованиях группы этого пространства, которые суть так называемые преобразования Лоренца. Согласно же общей теории относительности, многообразие пространства — времени неоднородно и лишь в каждой «бесконечно малой» области сводится к псевдоевклидову, т. е. оно есть пространство картановского типа (см. раздел Современная геометрия). Однако такое понимание стало возможно лишь позже, т.к. само понятие о пространствах такого типа появилось после теории относительности и было развито под её прямым влиянием.

  В самой математике положение и роль Г. определяются прежде всего тем, что через неё в математику вводилась непрерывность. Математика как наука о формах действительности сталкивается прежде всего с двумя общими формами: дискретностью и непрерывностью. Счёт отдельных (дискретных) предметов даёт арифметику, пространств. непрерывность изучает Г. Одним из основных противоречий, движущих развитие математики, является столкновение дискретного и непрерывного. Уже деление непрерывных величин на части и измерение представляют сопоставление дискретного и непрерывного: например, масштаб откладывается вдоль измеряемого отрезка отдельными шагами. Противоречие выявилось с. особой ясностью, когда в Древней Греции (вероятно, в 5 в. до н. э.) была открыта несоизмеримость стороны и диагонали квадрата: длина диагонали квадрата со стороной 1 не выражалась никаким числом, т.к. понятия иррационального числа не существовало. Потребовалось обобщение понятия числа — создание понятия иррационального числа (что было сделано лишь много позже в Индии). Общая же теория иррациональных чисел была создана лишь в 70-х гг. 19 в. Прямая (а вместе с нею и всякая фигура) стала рассматриваться как множество точек. Теперь эта точка зрения является господствующей. Однако затруднения теории множеств показали её ограниченность. Противоречие дискретного и непрерывного не может быть полностью снято.

  Общая роль Г. в математике состоит также в том, что с нею связано идущее от пространственных представлений точное синтетическое мышление, часто позволяющее охватить в целом то, что достигается анализом и выкладками лишь через длинную цепь шагов. Так, Г. характеризуется не только своим предметом, но и методом, идущим от наглядных представлений и оказывающимся плодотворным в решении многих проблем др. областей математики. В свою очередь, Г. широко использует их методы. Т. о., одна и та же математическая проблема может сплошь и рядом трактоваться либо аналитически, либо геометрически, или в соединении обоих методов.

  В известном смысле, почти всю математику можно рассматривать как развивающуюся из взаимодействия алгебры (первоначально арифметики) и Г., а в смысле метода — из сочетания выкладок и геометрических представлений. Это видно уже в понятии совокупности всех вещественных чисел как числовой прямой, соединяющей арифметические свойства чисел с непрерывностью. Вот некоторые основные моменты влияния Г. в математике.

  1) В возникновении и развитии анализа Г. наряду с механикой имела решающее значение. Интегрирование происходит от нахождения площадей и объемов, начатого ещё древними учёными, причём площадь и объём как величины считались определёнными; никакое аналитическое определение интеграла не давалось до 1-й половины 19 в. Проведение касательных было одной из задач, породивших дифференцирование. Графическое представление функций сыграло важную роль в выработке понятий анализа и сохраняет своё значение. В самой терминологии анализа виден геометрический источник его понятий, как, например, в терминах: «точка разрыва», «область изменения переменной» и т.п. Первый курс анализа, написанный в 1696 Г. Лопиталем, назывался: «Анализ бесконечно малых для понимания кривых линий». Теория дифференциальных уравнений в большей части трактуется геометрически (интегральные кривые и т.п.). Вариационное исчисление возникло и развивается в большой мере на задачах Г., и её понятия играют в нём важную роль.

  2) Комплексные числа окончательно утвердились в математике на рубеже 18—19 вв. только вследствие сопоставления их с точками плоскости, т. е. путём построения «комплексной плоскости». В теории функций комплексного переменного геометрическими методам отводится существенная роль. Само понятие аналитической функции w = f (z) комплексного переменного может быть определено чисто геометрически: такая функция есть конформное отображение плоскости z (или области плоскости z) в плоскость w. Понятия и методы римановой Г. находят применение в теории функций нескольких комплексных переменных.

  3) Основная идея функционального анализа состоит в том, что функции данного класса (например, все непрерывные функции, заданные на отрезке [0,1]) рассматриваются как точки «функционального пространства», причём отношения между функциями истолковываются как геометрические отношения между соответствующими точками (например, сходимость функций истолковывается как сходимость точек, максимум абсолютной величины разности функций — как расстояние, и т.п.). Тогда многие вопросы анализа получают геометрическое освещение, оказывающееся во многих случаях очень плодотворным. Вообще, представление тех или иных математических объектов (функций, фигур и др.) как точек некоторого пространства с соответствующим геометрическим толкованием отношений этих объектов является одной из наиболее общих и плодотворных идей современной математики, проникшей почти во все её разделы.

  4) Г. оказывает влияние на алгебру и даже на арифметику — теорию чисел. В алгебре используют, например, понятие векторного пространства. В теории чисел создано геометрическое направление, позволяющее решать многие задачи, едва поддающиеся вычислительному методу. В свою очередь нужно отметить также графические методы расчётов (см. Номография) и геометрические методы современной теории вычислений и вычислительных машин.

  5) Логическое усовершенствование и анализ аксиоматики Г. играли определяющую роль в выработке абстрактной формы аксиоматического метода с его полным отвлечением от природы объектов и отношений, фигурирующих в аксиоматизируемой теории. На том же материале вырабатывались понятия непротиворечивости, полноты и независимости аксиом.

  В целом взаимопроникновение Г. и др. областей математики столь тесно, что часто границы оказываются условными и связанными лишь с традицией. Почти или вовсе не связанными с Г. остаются лишь такие разделы, как абстрактная алгебра, математическая логика и некоторые др.

  Лит.: Основные классические работы. Евклид, Начала, пер. с греч., кн. 1—15, М. — Л.,1948—50; Декарт Р., Геометрия, пер. с латин., М. — Л., 1938; Монж Г., Приложения анализа к геометрии, пер. с франц., М. — Л., 1936; Ponselet J. V., Traite des proprietes projectives des figures, Metz — Р., 1822; Гаусс К. Ф., Общие исследования о кривых поверхностях, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Лобачевский Н. И., Полн. собр. соч., т. 1—3, М. — Л., 1946—51; Больаи Я., Appendix. Приложение,..., пер. с латин., М. — Л., 1950; Риман Б., О гипотезах, лежащих в основаниях геометрии, пер. с нем., в сборнике: Об основаниях геометрии, М., 1956; Клейн Ф., Сравнительное обозрение новейших геометрических исследований («Эрлангенская программа»), там же; Картан Э., Группы голономии обобщенных пространств, пер. с франц., в кн.: VIII-й Международный конкурс на соискание премии имени Николая Ивановича Лобачевского (1937 год), Казань, 1940; Гильберт Д., Основания геометрии, пер. с нем., М. — Л., 1948.

  История. Кольман Э., История математики в древности, М., 1961; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Cantor М., Vorlesungen über die Geschichte der Mathematik, Bd 1—4, Lpz., 1907—08.

1 ... 145 146 147 148 149 150 151 152 153 ... 277
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?