Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Биология » Популярно о микробиологии - Михаил Бухар

Популярно о микробиологии - Михаил Бухар

Читать онлайн Популярно о микробиологии - Михаил Бухар
1 ... 9 10 11 12 13 14 15 16 17 ... 25
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Только в 1840-е гг. (т. е. через 100 с лишним лет после смерти Левенгука) микроскопия как бы родилась вновь. Увеличение и качество изображения изготавливаемых микроскопов достигло уровня уникальных приборов Левенгука. Кроме того, с помощью этих микроскопов удавалось рассматривать множество объектов, и не нужно было создавать для каждого из них новый микроскоп, как это делал Левенгук. И тут микроскоп из увлечения чудака-одиночки стал постепенно превращаться в широко используемый инструмент изучения природы. Одновременно стали разрабатываться новые типы линз, новые сорта стекла для них и новые типы микроскопов. Над дальнейшим развитием микроскопии работали физики, стекловары, оптики, механики.

Микроскоп играл огромную роль в изучении окружающего нас мира и продолжает играть одну из ключевых ролей в открытиях и изобретениях, служащих основой новейших технологий. Конечно, микроскоп уже не тот, каким когда-то был. Из примитивного устройства он стал воплощением последних достижений в области оптической физики, механики и электронной техники.

Микроскопы используют представители разных профессий, например сталевары (структура стали и сплавов), судебные эксперты (судебная баллистика), химики (строение кристаллов и полимерных волокон) и т. д. Кстати, Луи Пастер, рассматривая под микроскопом кристаллы виннокаменной кислоты, положил начало стереохимии.

Использование микроскопа способствовало становлению новых направлений в науке. Так, понятие о жидкокристаллическом состоянии вещества впервые возникло при изучении субклеточных структур, а затем перекочевало в физику и в наше время стало отдельной научной дисциплиной об особом состоянии вещества, промежуточном между твердым и жидким. Кристаллография — наука о кристаллах — тоже многим обязана микроскопии, которая из усовершенствованного способа наблюдения за микрообъектами превратилась в самостоятельный метод познания природы. Его развитие и совершенствование привело к созданию новых типов микроскопов с поистине огромной разрешающей способностью. В настоящее время с их помощью можно увидеть даже отдельные атомы!

Стерео-, фазово-контрастные, флуоресцентные, электронные, лазерные сканирующие, сканирующие туннельные, атомные силовые микроскопы — вот только краткий и неполный перечень «детей и внуков» микроскопа Левенгука.

В марте 2007 года в г. Орландо (Флорида, США) на международной научной конференции среди 4200 исследователей из 68 стран был проведен опрос-голосование о наиболее значительных достижениях человечества в области наук о материалах. На пятом месте оказалась открытая в 1668 г. Антони Левенгуком оптическая микроскопия. Как говорится, комментарии излишни!

Часть III

Микробиология и другие науки

Глава 20

Микробиология и генетика

Именно в биологии суждено состояться самым крупным открытиям ближайших десятилетий. Этот путь, как правило, мыслится через внедрение физики и химии, через дальнейшее развитие блестящих достижений современной генетики.

А. Любищев

Передача наследственных свойств — одно из удивительных таинств живой материи. В последние десятилетия благодаря успехам различных наук, причем не только биологических, удалось вплотную подойти к раскрытию этой тайны.

Для изучения генетических законов важно было найти такой организм, который легко поддавался бы изучению, достаточно быстро размножался, а его содержание в процессе эксперимента было бы недорогим и нетрудоемким. Первые работы, заложившие основы современной генетики, принадлежат монаху Г. Менделю, экспериментально доказавшему существование вещества наследственности. Мендель работал с семенами гороха, и ему для проведения каждого опыта требовался целый год или, точнее говоря, вегетационный период. Впоследствии генетики обычно использовали в качестве объекта мушку дрозофилу. Она длиной всего 3 мм, быстро, в течение 10–12 дней, дает потомство, и ее можно выращивать на относительно простом корме.

Микроорганизмы оказались еще более удобным объектом. Во-первых, скорость их размножения в 500–600 раз выше, чем у мушки-дрозофилы, т. е. для получения нового поколения микробов достаточно всего нескольких десятков минут. Во-вторых, проблема питания и содержания после приготовления пробирки с питательной средой полностью отпадает. Использование микроорганизмов в качестве модельного объекта существенно продвинуло генетические исследования. Удалось установить природу наследственных факторов и выделить носитель наследственной информации — дезоксирибонуклеиновую кислоту — ДНК. В дальнейшем выяснилось, как она работает, передавая наследственную информацию, а бактерия Escherichia coli стала моделью для разработки различных генетических методик и приемов.

А для чего, собственно, человеку знание законов передачи наследственной информации? Понимание механизма ее передачи от поколения к поколению дает возможность создавать организмы с заранее известными свойствами.

Задача создания новых сортов растений и пород животных, по сути, стояла перед человечеством всегда. До недавнего времени люди изменяли наследственные признаки путем скрещивания сортов или пород с различными свойствами, фактически отдавая на откуп генетическому аппарату клетки возможность создавать новые структуры.

С развитием генетики в нашем веке появился другой метод влияния на наследственность, а именно — воздействие непосредственно на ДНК различными мутагенными факторами, например излучением, вызывающим в ней случайные изменения. Эти изменения приводили к образованию мутантов, которые по своим свойствам не всегда отвечали поставленной задаче и довольно часто оказывались нежизнеспособными. Очевидно, что в обоих случаях мы действовали вслепую.

Дальнейшее изучение тонких механизмов процесса передачи наследственной информации привело к более глубокому его пониманию и вооружило генетиков и микробиологов настолько эффективными приемами принудительной передачи этой информации, что получение принципиально новых, ранее не существовавших в природе микроорганизмов с заданными свойствами стало реальностью. Познав механизм, с помощью которого они обмениваются наследственной информацией, генетики и микробиологи разработали не только приемы, идентичные используемым в живой клетке, но и принципиально новые методы получения искусственных генетических структур в лабораторных условиях. Возникла новая область науки — генетическая инженерия. В чем же заключаются ее методы?

Вспомним известный пример, когда вирус, внедряясь в бактериальную клетку, «завоевывает» ее и, захватив власть над внутриклеточными системами, заставляет их синтезировать только те белки, которые необходимы для построения множества ему подобных вирусов.

Генный инженер в известной степени производит аналогичные действия: вводит в бактериальную клетку молекулу ДНК, полученную не в результате многовековой эволюции, а с помощью химического синтеза или путем соединения природных генов различного происхождения. Не правда ли, удивительно простое решение? Но насколько легко осуществить его в реальных условиях, вот в чем вопрос. Ведь несмотря на то что молекулы ДНК являются гигантами в мире молекул, размеры их по сравнению с инструментальными возможностями человека остаются несоизмеримо малыми. А задача состоит в том, чтобы перенести в клетку небольшой фрагмент молекулы ДНК, для чего необходимо «взять его в руки», отрезать и прикрепить к другой молекуле. Такая работа была бы не по силам даже знаменитому Левше, который подковал английскую блоху. Кстати, подковать-то он ее подковал, но прыгать она перестала: подковки оказались тяжеловаты. И не надо забывать, что английская блоха представляла собой всего лишь механическое устройство, а не живой организм, который повредить гораздо проще. Таким образом, операция по перенесению чужеродного фрагмента сложна не только из-за чрезвычайно малых размеров объекта, но и потому, что крайне важно провести эту операцию, не нарушив тонкой структуры ДНК, обеспечивающей жизненный цикл организма, чтобы он мог продолжать «прыгать».

Таким тончайшим инструментом, с помощью которого можно «взять в руки» фрагменты ДНК и накрепко присоединить их к основной конструкции, да так, чтобы вся система продолжала работать, оказались ферменты. Нужно выделить их в достаточно чистом виде и использовать в роли, аналогичной той, которую они выполняют в клетке. Естественно, что необходимо иметь на вооружении комплекс ферментов, осуществляющих подобные реакции. К ним относятся рестриктазы, разделяющие ДНК на фрагменты, и лигазы, соединяющие эти фрагменты в длинные цепи. По образному выражению академика А. А. Баева, рестриктазы — скальпель генетической инженерии, а лигазы — ее игла и нити.

1 ... 9 10 11 12 13 14 15 16 17 ... 25
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?