Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Техническая литература » CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - Владо Дамьяновски

CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - Владо Дамьяновски

Читать онлайн CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии - Владо Дамьяновски
1 ... 9 10 11 12 13 14 15 16 17 ... 150
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Рис. 2.20. Кривая инерционности зрительного восприятия.

В основе первых кинофильмов начала XX века, мультипликационных фильмов и даже «перекидных книжек», которыми мы играли в детстве, лежит концепция инерционности зрения. Когда расположенные в логической последовательности картинки мелькают у нас перед глазами со скоростью, равной инерционности зрения или превышающей ее, мы видим непрерывно движущуюся картинку, хотя она состоит из отдельных изображений.

Кинокамера записывает изображения со скоростью 24 кадра в секунду. Обычно этого достаточно для пленки, которая заряжается в проекторы с очень слабой интенсивностью света — подобно тем, какие использовались на заре существования кинематографа. Для большой аудитории необходимы более сильные проекторы большого размера и более яркие экраны (такие, которыми мы пользуемся сегодня). Поэтому необходимость увеличения первоначальной скорости 24 кадра в секунду очевидна.

С точки зрения фотографии, которая во многом совпадает с кинематографической, непрактично увеличивать частоту смены кадров в кинокамере больше 24 кадров в секунду, поскольку тогда придется сокращать время экспонирования каждого кадра пленки. Это возможно либо при условии более высокой чувствительности пленки, что приводит к увеличению ее зернистости, либо при увеличении отверстия диафрагмы объектива, в результате чего получаются не очень качественные снимки при более низком уровне освещенности, а также уменьшенной глубине резкости. Для кинематографистов ни одно из этих двух условий неприемлемо, поэтому был найден другой выход: увеличение частоты кинопроекции (а не записи) с 24 до 48 кадров. Просто, как все гениальное.

Это оказалось возможным благодаря так называемому затвору «Мальтийский крест», который представляет собой круговой лепесток диафрагмы, вырезанный в форме мальтийского креста. Он вращается перед проекционной лампочкой и не только блокирует свет, когда пленка движется от одного

— Система цветного ТВ PAL: 625 строк развертки / 50 чересстрочных изображений в секунду.

— Система цветного ТВ NTSC: 525 строк развертки / 60 чересстрочных изображений в секунду.

— Система цветного ТВ SECAM: 625 строк развертки (раньше было 819) / 50 чересстрочных изображений в секунду.

Хотя в этих системах число строк в кадре и кадров в секунду различно, с точки зрения создания кадров используется общая идея — кадр за кадром и строка за строкой разворачиваются на высокой скорости, и благодаря концепции инерционности зрения мы видим фильм. Система NTSC (525 строк и 30 кадров в сек.) распространена, главным образом, в Соединенных Штатах, Канаде, Гренландии, Мексике, на Кубе, Филиппинах, в Панаме, Японии, Пуэрто-Рико и большинстве стран Южной Америки. Стандарт NTSC был разработан в 1941 г., первоначально — для черно-белого (монохромного) телевидения. Система ТВ-передачи цвета впервые была осуществлена в США в 1953 г.

Больше половины стран в мире используют одну из двух систем с 625 строками и 25 кадрами: PAL (Phase Alternating Line) или SECAM (Sequential Couleur Avec Memoire или Sequential Color with Memory).

Стандарт PAL был представлен в начале 1960-х гг. и принят в большинстве европейских стран, Австралии, Новой Зеландии, Китае, Индии и во многих странах Африки и Ближнего Востока. Стандарт PAL использует более широкую полосу пропускания канала, чем система NTSC, что позволяет получать более качественную картинку. Кроме того, кодирование цвета в PAL разрабатывалось позднее NTSC и обеспечивает более точное воспроизведение цвета и обладает лучшей помехозащищенностью.

Стандарт SECAM также появился в начале 1960-х гг. и распространен во Франции и других странах Европы, включая страны бывшего СССР. Система SECAM использует ту же ширину полосы, что и PAL, но передает цветовую информацию последовательно. Дополнительные 100 строк в системах SECAM и PAL придают видеоизображению больше четкости и яркости, но смена всего 50 разверток в секунду (в сравнении с 60 развертками в NTSC) может оставлять на экране небольшое мерцание.

С появлением новых цифровых стандартов телевидения (DTV) стало возможным использование как чересстрочной, так и прогрессивной развертки. В этом случае они обычно обозначаются латинскими буквами «i» (чересстрочная развертка) или «р» (прогрессивная развертка). Так, например, сокращение «1080i» обозначает формат телевидения высокой четкости (HDTV) с форматом кадра 1920x1080 пикселов и чересстрочной разверткой.

3. Оптика в системах видеонаблюдения

Некоторые считают качество оптики в системах видеонаблюдения доказанным. С повышением разрешающей способности телекамер и с миниатюризацией ПЗС-матриц мы все ближе подходим к пределу разрешающей способности, определяемому оптикой, поэтому нам требуется знать несколько больше, чем среднему технику. В этой главе обсуждаются, опять же в упрощенном виде, наиболее общие оптические термины, концепции и устройства, используемые в системах видеонаблюдения.

Преломление

Самая первая и основная концепция, с которой следует ознакомиться, это концепция преломления и отражения.

Когда луч света, распространяющийся в воздухе или вакууме, попадает в плотную среду, вроде воды или стекла, его скорость снижается в η раз (η всегда больше 1); η называется показателем преломления. Различные среды (прозрачные для света) имеют различные показатели преломления. Например, скорость света в воздухе составляет 300000 км/с (и почти столько же в вакууме). А когда луч света проходит через стекло, показатель преломления которого равен 1.5, скорость уменьшается до 200000 км/с.

Согласно волновой теории света уменьшение скорости света отражается в уменьшении длины волны. Это явление представляет собой основу концепции преломления. Если луч света падает на поверхность стекла перпендикулярно, длина световой волны уменьшается, но когда луч покидает стекло, скорость восстанавливается до нормального значения, т. е. восстанавливается начальная «воздушная длина волны», и свет продолжает распространяться в том же направлении. Однако же, если луч света падает на поверхность стекла под любым другим углом, получаются интересные вещи: луч (в этом случае он рассматривается с точки зрения волновой природы света) имеет фронт, который не одновременно пересекает стекло (потому что падает под углом). Часть фронта, которая первой попадает в новую среду, «замедляется» первой. Конечным результатом становится преломление луча света, т. е. луч слегка отклоняется от первоначального направления. Величина отклонения зависит от оптической плотности среды.

Чем плотнее среда, т. е. чем выше показатель преломления, тем больше луч отклоняется от первоначального направления.

Существует очень простое соотношение между углами падения и отражения и показателями преломления двух различных сред. Это соотношение было открыто голландским физиком Виллеброр-дом Снелиусом в начале XVII века. Используя простые вычисления, мы можем определить углы отражения в различных средах. Мы рассмотрим это позже, при вычислении углов полного отражения и числовой апертуры в волоконной оптике.

На рис. 3.1 основы преломления пояснены графически; здесь предполагается, что на стекло падает монохроматический (одной частоты) луч света. На рисунке также показано, что определенный процент падающего света всегда отражается обратно в воздух (или вакуум), но в случае стекла этот процент очень мал.

Теория преломления и отражения будет использоваться в последующих разделах, когда мы будем рассматривать теорию линз и волоконной оптики.

Рис. 3.1. Рефракция света и закон Снелиуса

Линзы как оптические элементы

Есть два основных типа линз: выпуклые и вогнутые.

Линзы первого типа, выпуклые, имеют положительное фокусное расстояние, т. е. действительный фокус, и называются такие линзы увеличивающими, так как они увеличивают изображение объекта.

Линзы второго типа, вогнутые, имеют отрицательное фокусное расстояние, т. е. мнимый фокус, они уменьшают изображение объекта.

Каждая линза характеризуется следующими основными параметрами:

• оптическая плоскость (плоскость, проходящая через центр линзы);

• оптическая ось (ось, перпендикулярная оптической плоскости и проходящая через ее центр);

• фокус (точка пересечения лучей, падающих параллельно оптической оси);

• фокусное расстояние (расстояние между оптической плоскостью и фокусом в метрах);

• диоптрии (величина, обратная фокусному расстоянию, выраженному в метрах).

В зависимости от физических размеров и типа поверхности существует множество различных типов линз: плосковыпуклые, выпукло-вогнутые, плосковогнутые и т. д. Название типа многое говорит о физическом строении линз, при этом «плоско» означает, что одна из двух поверхностей линзы плоская.

1 ... 9 10 11 12 13 14 15 16 17 ... 150
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈