Этюды о Вселенной - Тулио Редже
Шрифт:
Интервал:
Закладка:
Замкнута или открыта Вселенная?
Если Вселенная замкнута, то она должна достичь предельных размеров, после чего расширение сменится сжатием, и примерно через 100 млрд. лет, пройдя в обратном порядке все этапы своего пути, Вселенная снова сожмется в точку.
Если же Вселенная открыта, то она будет расширяться до тех пор, пока галактики не уйдут за пределы видимости друг друга. в конце концов мы дойдем до абсолютно темных небес.
Если бы вся эта колоссальная космическая машина имела единственной целью сотворение Земли, можно было бы удивляться напрасной трате времени или упущенным возможностям, во всяком случае, если, как мы подозреваем, наша планета – единственная, приютившая разумную жизнь.
В действительности Вселенная потратила не слишком много времени на создание жизни: 20 млрд. лет хоть и кажутся целой вечностью, на самом деле представляют собой лишь минимум, необходимый для того, чтобы где-то в недрах звезд начался синтез элементов, нужных для поддержания живых организмов. и если разобраться, то около трех миллиардов лет назад уже существовали водоросли и простейшие.
Должны ли мы доверять теории «большого взрыва»? в общем я бы дал положительный ответ на этот вопрос; или, что еще лучше, можно считать ее захватывающей рабочей гипотезой, которая приподнимает завесу над нашим далеким прошлым вплоть до самых истоков.
9. Нейтрино и космологияБолее подробное описание Вселенной на первых этапах ее развития следует предварить некоторыми сведениями о главных (или кажущихся таковыми) составляющих космического вещества. к этой захватывающей теме мы еще вернемся в дальнейшем.
Согласно представлению большинства людей, представлению, давшему жизнь в 30-х годах многочисленным рисованным картинкам и карикатурам, атом похож на маленькую солнечную систему, в которой роль Солнца играет центральное ядро, вокруг которого вращаются по своим орбитам электроны. Число электронов меняется от атома к атому и определяет химический элемент; водород имеет всего один электрон, в то время как в уране их уже 92. Физикам удалось исследовать также и ядро, и выяснилось, что оно состоит из нуклонов двух сортов – протонов и нейтронов. Речь идет о почти одинаковых частицах, отличающихся друг от друга только тем, что электрический заряд протона положителен, в то время как нейтрон заряда не имеет.
Нейтрино
Кроме того (и здесь мы подошли к основному предмету нашего обсуждения), нейтрон, не входящий в состав ядра, распадается меньше чем через двадцать минут на протон, электрон и новую частицу, нейтрино, которую можно грубо представить как «нейтральный электрон», т.е. электрон без электрического заряда.
Нейтрино принесло много хлопот физикам. Оно практически не взаимодействует с веществом и может пройти сквозь бетонную стену толщиной в несколько световых лет, не встретив при этом никаких препятствий. Десятки лет его существование связывали только с исчезновением энергии при распаде нейтрона. Ферми в свое время пришел к правильному выводу, что эта энергия должна быть унесена невидимой частицей, «легким нейтроном», нареченным нейтрино.
Только в послевоенное время создание больших атомных реакторов и позже мощных ускорителей частиц в ЦЕРНе (Европейский центр ядерных исследований в Женеве) и Брукхейвене (США) позволило непосредственно заметить нейтрино. на этих мощных машинах производятся пионы очень высоких энергий, которые рождаются при столкновениях ускоренных протонов с мишенью (обычно состоящей из других протонов или из ядер). Пионы – это частицы с чрезвычайно малым временем жизни, и, родившись, они тут же распадаются, производя на свет, кроме всего прочего, и нейтрино.
Появившиеся нейтрино имеют очень высокую энергию, а с увеличением энергии вероятность взаимодействия нейтрино с веществом также увеличивается. При высоких энергиях нейтрино удается зарегистрировать с помощью детекторов некосмических размеров. в ядерных реакторах же рождается огромное количество нейтрино с низкими энергиями; ничтожная часть их может поглотиться в баке, содержащем несколько десятков тонн жидкости, похожей на глицерин. Нейтрино, попадающие в этот бак, могут вызвать характерные реакции, чем и обнаруживают себя.
Имеют ли нейтрино массу?
В термоядерных реакциях, происходящих в недрах Солнца, также рождаются нейтрино. Попытки экспериментаторов зарегистрировать их по характерным реакциям не привели к успеху: число обнаруженных нейтрино оказалось намного ниже, чем ожидалось, что подорвало веру в правильность современных представлений о процессах, идущих в недрах Солнца. Для разрешения возникших сомнений было предложено провести другие, весьма остроумные (и дорогостоящие) эксперименты с использованием экзотических минералов, таких, как, например, лорандит из Черногории, или редких металлов типа галлия в больших количествах. Поживем – увидим.
Согласно Понтекорво, нехватка солнечных нейтрино объясняется тем, что на пути от Солнца к Земле часть их успевает превратиться в нейтрино другого сорта, а эти другие нейтрино зарегистрировать в обычном эксперименте невозможно. Прямое отношение к этой гипотезе имеет вопрос о массе нейтрино. Имея практически массу, равную нулю, нейтрино перемещается со скоростью света. в действительности нейтрино могло бы иметь массу порядка одной тридцатитысячной массы электрона, что не противоречило бы результатам современных экспериментов. Измерение массы нейтрино, выполненное советскими учеными, дало величину как раз такого порядка. Этот результат ждет своего подтверждения. Другие данные, собранные вместе, также, по-видимому, свидетельствуют в пользу гипотезы массивного нейтрино, хотя каждый отдельный результат сам по себе не выглядит достаточно убедительно.
К этому моменту у читателя мог возникнуть вполне законный вопрос: какова же причина столь большого интереса к такой неуловимой частице и ее исчезающе малой массе?
Причина эта основана прежде всего на соображениях симметрии, по которым нейтрино отводится вполне определенная и важная роль при классификации элементарных частиц. Но к этому вопросу мы еще вернемся.
Реликтовые нейтрино
Мне самому кажется столь же важной и, возможно, понятной для непосвященных другая причина повышенного интереса к массе нейтрино. Согласно теории, в первые минуты жизни Вселенной появилось огромное количество нейтрино, которые до сих пор блуждают в космических просторах и роль и происхождение которых делают их похожими на реликтовое излучение, обнаруженное Пензиасом и Уилсоном.
Не существует разумных доводов в пользу возможности увидеть когда-нибудь эти нейтрино, во всяком случае если это не будет связано с действительно новым и революционным открытием. Если бы нейтрино имели массу, то, как показали вычисления, их общая масса могла бы быть в 30 раз больше, чем вся масса обычного вещества, рассеянного в космосе. Нейтрино могли бы восполнить «недостающую массу», нужную для того, чтобы Вселенная была замкнута, на чем настаивают одни и против чего выступают другие. Согласно этой гипотезе, мы купаемся в «нейтринном море», вовсе не сознавая этого, если не считать наблюдений за самыми далекими галактиками.
Вообще говоря, вся эволюция вещества в нашей Вселенной в конечном счете подвержена влиянию этого нейтринного моря. Возможно, наши потомки научатся регистрировать реликтовые нейтрино и сумеют заглянуть непосредственно в космос времен нескольких минут после «большого взрыва», когда наступал критический момент для синтеза элементов. Таким образом, речь идет не об идее, представляющей лишь академический интерес, а о фундаментальных вопросах, непосредственно связанных с ключевыми направлениями современной космологии, с проблемой наших истоков.
10. Космический корабль будущегоАмериканская автоматическая станция (зонд), облетевшая Юпитер, послала на Землю изумительные фотографии самой планеты и ее двух спутников. Тот же зонд с помощью поля тяготения Юпитера был далее направлен в сторону Сатурна и достиг его в точно намеченное время после путешествия, длительность которого поражает воображение. об этом сейчас мало кто вспоминает, и, если не считать ссылок вскользь в журнальных статьях, видно, что это событие интересует очень немногих. Похоже, что двери в грандиозный космический цирк, приковавший всех к экранам телевизоров во время первой посадки на Луну, на этот раз оказались закрытыми. Однако действительно интересная страница в исследовании космоса открывается только теперь. Пройдут десятки лет, прежде чем человек отважится – если вообще ему это удастся – отправиться в сторону других планет. Автоматические же станции уже достигают пределов Солнечной системы, и мы наконец начинаем узнавать кое-что о доселе практически незнакомых планетах – достаточно вспомнить пример Венеры.