Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Физика » Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания - Пол Хэлперн

Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания - Пол Хэлперн

Читать онлайн Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания - Пол Хэлперн
1 ... 9 10 11 12 13 14 15 16 17 ... 71
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Обратив внимание на заметные сходства между электромагнетизмом и гравитацией, такие как закон ослабления силы обратно пропорционально квадрату расстояния между телами, Эйнштейн в 1910 году вознамерился вывести полевые уравнения гравитации. Результатом этой работы стала его совершенная общая теория относительности. Проводя аналогию между силами, он заложил основы для своих последующих попыток их объединения.

В разгар своей битвы Эйнштейн приехал в Вену и представил отчет о проделанной работе. Его потрясающий доклад на конференции вдохновил юного Шрёдингера, в его двадцать с половиной лет, перейти от прикладных вопросов, таких как измерение свойств света и излучения, к более фундаментальным вопросам: загадкам гравитации и свойствам Вселенной в целом. Параллели между электромагнетизмом и гравитацией, которые провел Эйнштейн, позднее возбудили у Шрёдингера интерес к поиску единой теории всех сил природы. Венская конференция 1913 года стала поворотной точкой в его карьере. Казалось, ничто в мире не способно ускользнуть от его пытливого ума.

Сумерки империи

Блестящая столица Австро-Венгерской империи теряла свое величие. Ее центральный огонь скоро погаснет, а сателлиты разлетятся, как головешки на ветру. Угасание будет таким же быстрым и полным, как солнечное затмение. Хотя не все было так мрачно. В моменты сгущающейся темноты звезды, которые не заметны днем, имеют все шансы засверкать. Город Габсбургов закатил вечеринку — праздничный съезд ученых, который окажется последним для золотого века Вены. Были приглашены тысячи лучших в Европе немецкоговорящих ученых. От Праги до Будапешта и от Берлина до Цюриха, ученые всех возрастов собрались, чтобы обсудить новые удивительные теории частиц, атомов, света, электричества, статистическую физику и другие вопросы. Однако некоторые известные личности все же отсутствовали: Планк и Арнольд Зоммерфельд, уважаемый директор Мюнхенского физического института, не прибыли. Тем не менее энтузиазм по поводу новых открытий сделал последний вальс австро-венгерской физики запоминающимся.

Никаких средств не пожалели в тот год для съезда немецких естествоиспытателей и физиков (той же группы ученых, перед которой выступал Минковский пять лет назад в Кёльне). Встреча проходила с 21 по 28 сентября 1913 года в новом здании Физического института Венского университета, неподалеку от Больцмангассе. В свое время Франц Экснер согласился остаться на посту директора института только при условии строительства нового здания. После заседаний в большом лекционном зале более семи тысяч участников конференции посетили роскошный прием в императорском дворце, банкет, организованный городской администрацией Вены, и вечеринку, устроенную самими венскими физиками.

Среди обсуждаемых вопросов в тренде были излучение и атомная физика. В числе докладчиков присутствовали германский физик Ханс Гейгер, изобретатель счетчика Гейгера (первый вариант его конструкции был предложен в 1908 году) и бывший коллега знаменитого физика новозеландского происхождения Эрнеста Резерфорда. В 1909 году в Университете Манчестера Гейгер и Эрнест Марсден под руководством Резерфорда провели хитрый эксперимент по исследованию структуры атома. Облучая золотую фольгу пучком альфа-частиц (альфа-частица — это ядро атома гелия), они обнаружили, что почти все частицы беспрепятственно проходят сквозь фольгу. Однако небольшая часть отражалась обратно под острым углом, как бейсбольные мячи отскакивают от бетонной стены. Из этих неожиданных результатов Резерфорд сделал вывод, что атомы представляют собой в основном пустое пространство, но при этом содержат крошечные положительно заряженные центральные части, которые Резерфорд назвал ядрами. Его модель атома, предложенная в 1911 году, представляла собой подобие Солнечной системы, где отрицательно заряженные электроны вращались вокруг положительно заряженного ядра, и она коренным образом изменила концепцию атома. Атомы больше не могли рассматриваться как неделимые и твердые крошечные шарики, скорее они представляли собой сложные (составные) тела, главным образом содержащие идеальную пустоту. Доклад Гейгера на конференции был посвящен по большей части практическим способам детектирования альфа- и бета-частиц (последние позднее были отождествлены с электронами).

Как молодой исследователь Физического института Экснера и Института исследований радия, Шрёдингер тоже заинтересовался проблемой регистрации радиации. Месяцем ранее Шрёдингер посетил деревню Зеехам на озере Обертрумер, что под Зальцбургом, чтобы измерить содержание радия А — продукта распада радия[6] — в атмосфере. Проведя почти две сотни измерений с использованием набора трубок и электрометра, он вычислил, как меняется содержание радия А в атмосфере со временем. Любопытно, что, как показал Шрёдингер, даже пиковые значения радия А отвечали только за часть атмосферной радиации. Основываясь на результатах Шрёдингера и других работах, многие ученые пришли к выводу, что должны существовать другие источники атмосферной радиации, например гамма-излучение. Исследователи продолжили поиски возможных источников дополнительной радиации.

Сентябрьская конференция идеально подходила Шрёдингеру, поскольку была связана с его работой и проводилась в его родном городе. Он мог послушать доклады о последних открытиях в области радиоактивности, атомного ядра и связанных с этим тем. В одном таком докладе, сделанном германским астрофизиком Вернером Кольхёрстером из Галле, описывались полеты на воздушном шаре на высоте нескольких миль над Землей с оборудованием для регистрации радиации. Подтверждая результаты более ранних работ австрийского физика Виктора Гесса, он сообщил, что «проникающая радиация», по-видимому, имеет внеземное происхождение, потому что ее интенсивность усиливается с увеличением высоты. Сегодня мы называем эту радиацию, приходящую из-за пределов Земли, «космическими лучами». Историки науки Ягдиш Мехра и Гельмут Решенберг считают, что эта конференция стала «днем рождения космических лучей» благодаря докладу Кольхёрстера{25}.

В этом же году многие участники конференции, включая Эйнштейна, впервые узнали о замечательной теории Бора, предложенной им для объяснения атомной структуры. Эйнштейн полагал, что теория Бора была «одним из величайших открытий»{26}. Хотя ни в одном из докладов модель Бора не упоминалась, весть о триумфальном открытии пришла неформально, благодаря личному участию венгерского физика Дьёрдя де Хевеши, который был свидетелем ее разработки. Де Хевеши находился в Манчестере в 1912 году, когда Бор, будучи постдоком, работал там с Резерфордом. Он увидел, как совместные попытки Бора и Резерфорда в разработке атомной теории увенчались успехом. Затем де Хевеши посетил Институт исследований радия в Вене и сообщил потрясающие новости о работе Бора всем заинтересованным участникам конференции.

Бор взял за основу планетарную модель атома Резерфорда и использовал понятие кванта, чтобы объяснить стабильность атома и структуру спектральных линий. Вообще электроны не должны были иметь устойчивых орбит вокруг атомного ядра. Из-за потери энергии на электромагнитное излучение они должны были в конце концов упасть на ядро. Согласно классической физике, частота этого излучения должна быть синхронизирована с частотой обращения электронов по орбите.

Но этого не происходит. Атомы довольно устойчивы. Что-то должно объяснять, почему электроны остаются на устойчивых орбитах. Бор блистательно показал, что момент импульса электрона должен принимать только дискретные значения — кратные величине ħ, равной деленной на постоянной Планка. Другими словами, Бор показал, что момент импульса, как и энергия, должен квантоваться.

Момент импульса — это физическая величина, равная произведению импульса тела (который, в свою очередь, является произведением скорости тела на его массу) на радиус орбиты. В классической физике это непрерывный параметр, то есть он может принимать любое значение. Если постановщик просит танцора закрутить партнершу чуть быстрее, танцор может потянуть чуть сильнее за ее руку, чтобы придать ей дополнительный момент силы[7] (технически называемый крутящим моментом) и тем самым увеличить ее момент импульса.

Бор же обнаружил удивительный факт: нельзя придать электронам произвольную скорость вращения или выбрать произвольный радиус орбиты. Электроны могут изменять свои состояния, только поглощая или испуская конечные порции энергии и приобретая или теряя фиксированные порции момента импульса. Поэтому вместо непрерывного изменения положения или скорости электроны внезапно перескакивают с одной орбиты на другую подобно тому, как танцоры кажутся движущимися дискретно в свете стробоскопа.

1 ... 9 10 11 12 13 14 15 16 17 ... 71
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈