Красота в квадрате - Алекс Беллос
Шрифт:
Интервал:
Закладка:
вероятность того, что Чарльз Дарвин ответит на письмо за n дней
Мы отвечаем на электронные письма по такой же схеме: на большинство даем ответ немедленно, тогда как некоторые лежат в папке «Входящие» целую вечность.
Японские ученые, оценив объем продаж книг за период с 2005 по 2006 год, пришли к следующему выводу [13]:
процент от общего объема продаж книги с порядковым номером n в Японии в 2005–2006 годах
Иными словами, несколько книг становятся лидерами продаж, тогда как другие так и остаются непроданными. В киноиндустрии в основе модели ведения бизнеса лежит та же закономерность: незначительное количество фильмов становятся блокбастерами, тогда как большинство терпят крах в прокате. В обоих случаях переход от успеха к неудаче математически предсказуем.
Мы получили четыре представленных выше уравнения, отобразив фактические данные на графике, выполненном в двойном логарифмическом масштабе (эти графики размещены чуть ниже), и измерили градиент линий наилучшего соответствия. (Снижение линии на последнем участке данных, полученных в Японии, объясняется нехваткой места на полках: книжные магазины не могут вместить все книги, которые теоретически могли бы быть у них в наличии.) Прямая линия на графике с логарифмическим масштабом по обеим осям означает, что здесь имеет место степенной закон, а градиент этой линии — константа a в уравнении степенного закона. Я не указывал значения константы k в каждом из уравнений, поскольку она зависит от размера выборки и не влияет на форму кривой, поэтому не представляет для нас интереса. Не забывайте о том, что, если бы в каждом из этих случаев данные были отображены на графике в нормальном масштабе, мы получили бы L-образную кривую с резким снижением в начале и длинным хвостом.
Данные о поведении шведских мужчин, колумбийских боевиков, Чарльза Дарвина и японских покупателей книг подчиняются степенному закону
Я привожу так много примеров для того, чтобы вы увидели мир таким, каким его видели Джордж Ципф, Вильфредо Парето и Ричард Кох. Если мы возьмем, к примеру, распределение роста в произвольной группе людей, мы сможем вычислить его среднее значение, поскольку вокруг него группируется больше всего чисел. Например, средний рост британских мужчин составляет 175 сантиметров. Но что касается частоты употребления слов, богатства, количества половых партнеров, войн, времени для ответа на письма, книг и фильмов, то тут мы не можем говорить о среднем значении. Понятие средней величины неприменимо к употреблению слов, распределению богатства, продаже книг или кассовым сборам от проката фильмов. Когда речь идет о поведении человека, мы живем в мире, смещенном в сторону экстремальных значений.
Степенные законы широко распространены не только в гуманитарных, но и в естественных науках. Магнитуда землетрясения обратно пропорциональна количеству землетрясений данной магнитуды; размер лунного кратера обратно пропорционален числу кратеров данного размера; если разбить замерзшую картофелину о стену, размер каждого фрагмента будет обратно пропорционален количеству фрагментов этого размера [14]. Распространенность степенных законов в физике объясняет, почему многие ученые, исследующие эти законы в социальных системах, начинали свою карьеру в качестве физиков. Один из таких ученых — Альберт-Ласло Барабаши, авторитетный профессор Северо-Восточного университета в Бостоне.
В настоящее время Барабаши занимается изучением сетей [15]. В определенных сетях, таких как интернет, принята математическая теория, которая объясняет причины появления степенных законов. Например, популярность сайтов в целом подчиняется степенному закону, так же как и рейтинг пользователей «Твиттера» по количеству подписчиков. «Тот факт, что степенные законы столь типичны, универсальны и легко узнаваемы, приводит в недоумение, — говорит Барабаши. — Казалось бы, в мире должно быть больше разнообразия!»
Предположим, на рисунке слева изображена модель сети, состоящей из трех узлов и двух связей. В качестве узлов могут выступать люди или сайты, а в качестве связей — любой тип соединения между ними. Барабаши утверждает, что степенной закон имеет место в случае роста сети по принципу предпочтительного присоединения. Это означает, что, когда в сети появляется новый узел, вероятность его связи с любым другим узлом, уже включенным в сеть, пропорциональна количеству связей, имеющихся у этого узла. Другими словами, узлы с большим числом связей получают еще больше связей. Богатые становятся богаче. Известные еще известнее. У узла с наибольшим количеством связей самые высокие шансы на получение новых связей, и чем больше связей у него появляется, тем привлекательнее он становится.
Если маленькая сеть начнет расти по принципу предпочтительного присоединения, то со временем она будет напоминать крупную сеть
Если бы сеть, расположенная сверху, расширялась по принципу предпочтительного присоединения, после включения в нее пары сотен новых узлов она выглядела бы так же, как сеть снизу. У большинства узлов этой сети есть только одна связь, и всего несколько узлов (называемых хабами) имеют несколько связей. Если упорядочить узлы по числу связей и построить график, получится уже знакомая вам кривая с длинным хвостом. «Степенной закон вступает в игру каждый раз, когда вы принимаете решение [о том, с кем устанавливать связь]», — утверждает Барабаши. Если включить в сеть несколько миллионов узлов по принципу предпочтительного присоединения, то она будет выглядеть точно так же, как карта связей между пользователями «Твиттера» или модель интернет-пространства.
Одна из причин столь широкой распространенности сетей со степенным распределением узлов по количеству связей кроется в их особой устойчивости. Если в такой сети вы удаляете узел случайным образом, это, скорее всего, будет второстепенный узел (поскольку таких узлов гораздо больше), а не хаб, поэтому в целом на всей сети это особо не скажется. И наоборот, степенные сети становятся очень уязвимыми, если происходит атака на хаб. Иными словами, если выйдет из строя мой сайт, этого никто не заметит, кроме меня самого. Однако, если хотя бы на пять минут отключится сайт Google, наступит глобальный хаос.
Интерес к степенным законам объясняется тем, что они позволяют выстроить на удивление простую математическую модель для целого ряда сложных явлений. Кроме того, их очень легко обнаружить. Как мы уже видели, две переменные подчиняются степенному закону, если точки на графике в двойном логарифмическом масштабе образуют прямую линию.
Однако в последнее время все чаще высказываются предположения о том, что ученые слишком спешат с выводами о присутствии степенного закона в полученных ими данных, поскольку в ряде случаев точки данных образуют на графике кривые линии, и их необходимо описывать другими уравнениями [16]. Безусловно, это важная тема для обсуждения, но она выходит за рамки данной книги. Тем не менее у степенных законов есть один аспект, который отрицать невозможно: они обладают одним удивительным математическим свойством.
Рассмотрим уравнение степенного закона: . Построив график этого уравнения для значений x от 2 до 10, мы получим первую кривую, изображенную ниже; график уравнения для значений x от 20 до 100 даст нам вторую кривую, изображенную ниже.
Кривая на графике в двух масштабах
Вы заметили разницу? Кривые абсолютно одинаковы. На самом деле, если построить кривую от n до 5n для любого значения n, она будет выглядеть точно так же, как на рисунке выше. Кривые для значений x от a до b всегда одинаковы, если отношение a/b представляет собой постоянную величину. Степенные законы раскрывают одну и ту же закономерность в любом масштабе, как бы далеко по хвосту вы ни продвинулись.
Если говорить о длинных хвостах, то такой был у Годзиллы.
Рост этого японского монстра (мутировавшего динозавра) — около 100 метров, что примерно в 50 раз больше роста высокого взрослого человека. А теперь представьте себе человека в 50 раз выше обычного роста, но с телом такой же формы. Этот увеличенный человек был бы в 50 раз шире и в 50 раз толще, а значит, в 50 × 50 × 50 = 125 000 раз тяжелее, чем раньше. Однако его кости в поперечном сечении увечились бы только в 50 × 50 = 2500 раз, стало быть, каждый квадратный дюйм его костей должен был бы поддерживать в 50 раз больше веса. Кости гигантского человека сломались бы при первой же попытке сделать шаг. Годзиллу постигла бы та же участь.