UNIX — универсальная среда программирования - Керниган Брайан Уилсон
Шрифт:
Интервал:
Закладка:
hoc1 59
hoc2 94
hoc3 248 (для версии с lex 229)
hoc4 396
hoc5 574
hoc6 809
Конечно, эти значения были вычислены программным способом: $
sed '/$/d' `pick *.[chyl]` | wc -l
Безусловно, развитие языка может быть продолжено, и вам предоставляется такая возможность в приведенных ниже упражнениях.
Упражнение 8.18Измените hoc6 так, чтобы можно было использовать поименованные формальные параметры в подпрограммах вместо $1 и т.д.
Упражнение 8.19Сейчас все переменные глобальны, за исключением параметров. Уже есть большая часть механизма для введения локальных переменных, хранимых в стеке. Одно из решений заключается во введении описания auto, которое резервирует место в стеке для перечисленных переменных; не перечисленные переменные считаются глобальными. Кроме того, придется расширить таблицу имен так, чтобы поиск в ней осуществлялся вначале для локальных, а затем для глобальных переменных. Как это связано с поименованными аргументами?
Упражнение 8.20Как бы вы ввели массивы в язык hoc? Как следует передавать их функциям и процедурам? Как возвращать их?
Упражнение 8.21Обобщите работу со строками так, чтобы переменные могли хранить строки, а не только числа. Какие операции потребуются для этого? Самая трудная часть управление памятью добейтесь динамичного хранения строк: память должна освобождаться, когда строки перестают быть нужными. В качестве промежуточного шага добавьте более развитые форматы печати, например, обеспечьте возможность использования некоторых форм стандартной Си функции printf.
8.7 Оценка времени выполнения
Мы сравнивали hoc с другими программами-калькуляторами UNIX, чтобы приблизительно оценить, насколько хорошо он работает. К таблице, представленной ниже (табл. 8.1), можно, конечно, отнестись скептически, но она показывает "разумность" нашей реализации. Все приведенные в ней величины даны в секундах. Работа велась на PDP-11/70. Было выполнено два теста. Первый, вычисление функции Аккерманна ack(3,3), — хороший тест для отработки механизма вызова функций. Здесь происходят 2432 вызова, причем некоторые из них достаточно глубоко вложены.
func ack() {
if ($1 == 0) return ($2+1)
if($2 == 0) return (ack($1 - 1, 1))
return (ack($1 - 1, ack($1, $2 - 1)))
}
ack(3,3)
Второй тест — стократное вычисление чисел Фибоначчи со значениями, меньшими 1000. В этом случае выполнялись в основном арифметические операции с периодическим вызовом функций:
proc fib() {
a = 0
b = 1
while (b < $1) {
с = b
b = a+b
a = c
}
}
i = 1
while (i < 100) {
fib(1000)
i = i + 1
}
Тест выполнялся на четырех языках: hoc, bc(1), bas (древний диалект Бейсика, который существует только на PDP-11) и Си (использовался тип PDP-11 для всех переменных) .
Числа, приведенные в табл. 8.1, являются суммой пользовательского и системного времени процессора и вычислены с помощью функции time.
Программа (3,3) 100*fib(1000) hoc 5.5 5.0 bas 1.3 0.7 bc 39.7 14.9 c <0.1 0.1Таблица 8.1: Время работы на PDP-11/70 (в секундах)
Можно также приспособить Си программу для определения количества времени, используемого каждой функцией. Программу нужно перетранслировать в режиме профилирования, введя флаг -p в каждой единице трансляции Си и при режиме загрузки. Если изменить файл makefile для чтения:
hoc6: $(OBJS)
сс $(CFLAGS) $(OBJS) -lm -о hoc6
чтобы команда сс задействовала переменную CFLAGS, а затем задать
$ make clean; make CFLAGS=-p
то результирующая программа будет выполняться с профилированием. После выполнения программы остается файл mon.out, который интерпретируется программой профилировщиком prof.
Для иллюстрации изложенного мы протестировали hoc6 на приведенной выше программе Фибоначчи:
$ hoc6 <fibtest Запуск теста
$ prof hoc6 | sed 15q Анализ
name %time cumsec #call ms/call
_pop 15.6 0.85 32182 0.03
_push 14.3 1.63 32182 0.02
mcount 11.3 2.25
csv 10.1 2.80
cret 8.8 3.28
_assign 8.2 3.73 5050 0.09
_eval 8.2 4.18 8218 0.05
_execute 6.0 4.51 3567 0.09
_varpush 5.9 4.83 13268 0.02
_lt 2.7 4.98 1783 0.08