Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Физика » Искусственное Солнце - Глеб Анфилов

Искусственное Солнце - Глеб Анфилов

Читать онлайн Искусственное Солнце - Глеб Анфилов
1 ... 8 9 10 11 12 13 14 15 16 ... 40
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Остается по формуле, выведенной для равновесного излучения абсолютно черного тела, вычислить, какой температуре соответствует найденное положение максимума энергии в спектре. Подсчет приведет нас к ответу: 5700 градусов. Вот как нагрето солнечное «одеяло»!

ЭЛЕКТРОНЫ-ПРЫГУНЫ

Каждое мгновение Солнце шлет нам длинную, с великим множеством знаков, депешу. В ней — подробнейшие протоколы не только о температуре, но и о химическом составе поверхности светила, о движении раскаленных газов, о состоянии их атомов. Но депеша эта — шифрованная. Разгадать ее не так-то просто. Уже почти столетие ученые читают эту непрерывно продолжающуюся, бесконечно длинную телеграмму. Сперва читали ка ощупь, «по складам», потом разгадали секреты солнечного «языка» и научились читать быстро и уверенно.

Что же это за депеша?

Тот же солнечный спектр.

Приглядевшись к радужной полоске, мы убедимся, что она словно рассечена на множество кусочков—перерезана тонкими и толстыми, казалось бы, совершенно беспорядочно расположенными линиями. Их впервые заметил внимательный глаз немецкого оптика Фраунгофера, и с тех пор они носят имя фраунгоферовых. Эти линии и представляют собой знаки солнечной депеши.

Чтобы понять причины их возникновения, вернемся ненадолго в мир атомов.

Как атомы поглощают свет?

Так же, как и излучают: определенными порциями — фотонами.

Но атом улавливает далеко не всякие фотоны. Он способен «усвоить» лишь те из них, которые сам может излучить. «Питаюсь тем, что рождаю» — вот его правило, продиктованное своеобразием законов микромира.

Возьмем тот же атом водорода. Единственный его электрон может двигаться лишь по ограниченному числу путей — орбит, отстоящих на разных расстояниях от ядра. Движение электрона по определенной орбите соответствует определенному запасу энергии в системе атома. Чем дальше находится орбита от ядра, тем, естественно, больше этот запас. И меняется он не непрерывно, а скачками.

Одухотворим на минутку микромир.

Вот к атому подлетает фотон и предлагает проглотить себя.

«А какая у тебя энергия?» — осведомляется атом.

«Столько-то электроновольт».

«Слишком мало. Этого не хватит, чтобы мой электрон перескочил даже на самую близкую орбиту от основной».

Разочарованный фотон улетает. Но его вскоре сменяет другой — с энергией побольше. Однако и на этот раз атом отказывается от предложения проглотить порцию света:

«У тебя энергия слишком велика. Зарядившись ею, мой электрон перескочит через ближнюю орбиту, но не допрыгнет до следующей».

Наконец прилетает фотон с энергией, которая как раз подходит для перескока электрона на вторую орбиту. И атом проглатывает этот фотон. Энергия его передается электрону, тот «прыгает вверх», попадает точно на верхнюю орбиту и застревает там.

Но на «втором этаже» электрон обычно живет недолго. Вскоре стремление к устойчивости заставляет его соскользнуть «вниз», на «прочное» и «насиженное» место в «первом этаже». А освобождающуюся энергию атом излучает в виде точно такого же фотона, какой он только что поглотил.

Ну, а что произойдет, если в атом врежется фотон очень высокой энергии — большей, чем нужно для прыжка электрона на самую далекую орбиту? Проглотит ли атом такой фотон?

Да, может проглотить, но ценой потери электрона. Получив слишком большую энергию, электрон выпрыгнет прочь из атома и обретет свободу.

Уяснив эти своеобразные особенности взаимодействия атомов -и света, мы сумеем понять наконец, как получается шифрованная солнечная депеша.

РАЗГАДКА ШИФРА

Поверхность солнечного шара представляется нам состоящей из ослепительно сверкающей материи. Кажется, зачерпнешь каким-нибудь фокусом ковшик солнечного вещества, донесешь до Земли — и будет сиять эта капля Солнца, расточая вокруг свет и тепло.

Нет, не будет, даже если вы доставите ее в фантастически нетеплопроводном и герметическом термосе.

Вещество наружных слоев солнечной фотосферы — внешней светящейся оболочки светила—гораздо разреженнее и прозрачнее, чем наш земной воздух. А светится фотосфера потому, что уж очень она обширна. Непрозрачным и сверкающим слой ее становится при огромной толщине.

Как же ведут себя атомы фотосферы, как сказывается в ней это сочетание прозрачности и непрозрачности?

Из глубин светила к фотосферным атомам идет могучий лучистый поток. Его составляют главным образом фотоны очень высоких энергий — настолько высоких, что каждый поглощающий их атом лишается одного, а то и нескольких электронов.

И вот летают взад-вперед свободные электроны и лишенные части электронов атомы—ионы. Но разлука их длится недолго. При первой возможности ион пополняет свой поредевший электронный отряд — втягивает на опустевшие орбиты встречные свободные электроны. Происходит, как говорят физики, рекомбинация ионов,

Как всегда, переход физической системы в устойчивое состояние сопровождается выделением энергии. При воссоединении электронов с ионами испускаются фотоны, причем самые разнообразные. Ведь энергия излученного таким способом фотона в большой мере зависит от скорости относительного движения электрона и иона, а она меняется в широких пределах. Сильнее удар соединившихся частиц—выше энергия фотона; слабее удар— и возникает менее энергичный фотон.

Добавим еще, что излучение фотонов разнообразных энергий происходит и помимо рекомбинации ионов—при простом торможении быстро летящих электронов, когда они сталкиваются между собой или с атомными ядрами.

Нам остается вспомнить, что фотоны разных энергий соответствуют свету разных длин волн, то есть разных цветов. Стало быть, при бесчисленных рекомбинациях и торможениях электронов в фотосфере должно возникать яркое свечение, обладающее набором всех цветов— непрерывным спектром. А это и есть та самая радужная полоска солнечного спектра, что помогла нам узнать температуру поверхности светила.

Но радужная полоска пересечена фраунгоферовыми линиями.

Теперь нетрудно разгадать и их сущность.

Фраунгоферовы линии — тоже результат поглощения атомами фотонов, но только не слишком высоких энергий, а тех сравнительно слабеньких световых пуль, которые возникают в основном при рекомбинациях ионов.

Из бесчисленного обилия разнообразных фотонов атомы выбирают подходящие для себя и поглощают их. Правда, они тут же стреляют точно такими же фотонами. Но вот что важно: «выстрелы» эти направлены не вперед, а куда угодно — в любую сторону.

Что же получается?

Благодаря значительной прозрачности фотосфера к нам доходит световой луч, зародившийся далеко в ее глубине. По пути встречные атомы фотосферы выдергивают из него фотоны определенных энергий и «выстреливают» их в сторону. Поэтому к нам солнечный луч добирается уже порядочно выщипанным. Разложив его в спектр, мы видим провалы — недостаток фотонов тех энергий, которые поглощены встречными атомами. Эти провалы и есть темные фраунгоферовы линии.

ФОТОННОЕ МЕНЮ

Если бы люди ели только те блюда, которые готовит их национальная кухня, то по обеденному меню было бы легко определить национальность человека.

Скажем, вы попросили в столовой суп харчо — значит, вы грузин. Ваш приятель заказал кофе по-варшавски — значит, он поляк.

В нашем мире так бывает, разумеется, далеко не всегда. Азербайджанцы с удовольствием едят украинский борщ, а украинцы — азербайджанский суп пити.

Другое дело — в мире атомов.

Где бы ни находились атомы — на Земле, на Солнце, в межзвездном пространстве — они строго придерживаются своей «национальной кухни». «Питаясь» светом, они поглощают всегда один и тот же ассортимент фотонов. А зависит этот ассортимент от внутреннего строения атома, от размещения электронных орбит.

В атомах разных химических элементов размещение таких орбит неодинаково. Стало быть, и фотонное «меню» у них разное. Например, водородный атом не проглотит того фотона, который жадно схватит атом лития. Наоборот, водород может не отказаться от фотона, «несъедобного» для лития.

В физических лабораториях ученые в совершенстве исследовали фотонный «рацион» различных элементов. И теперь по световому «меню» вещества можно достоверно узнать его химический состав. На этом основан мощный метод научной разведки — знаменитый спектральный анализ, зародившийся еще 100 лет назад.

Фраунгоферовы линии спектра Солнца — это протокол трапезы атомов, фотосферы.

Наложение линий точно показывает, какие фотоны «высосаны» из светового луча, а следовательно, какие химические элементы это сделали. Интенсивность же фраунгоферовых линий дает некоторое представление и о том, сколько тех или иных атомов участвовало в солнечном пиршестве, или, другими словами, каково относительное содержание различных элементов в наружной оболочке светила.

1 ... 8 9 10 11 12 13 14 15 16 ... 40
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈