Категории
Самые читаемые
ChitatKnigi.com » 🟢Научные и научно-популярные книги » Физика » 3. Излучение. Волны. Кванты - Ричард Фейнман

3. Излучение. Волны. Кванты - Ричард Фейнман

Читать онлайн 3. Излучение. Волны. Кванты - Ричард Фейнман
1 ... 7 8 9 10 11 12 13 14 15 ... 27
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

Фиг. 28.4. Иллюстрация вектор­ного характера сложения полей.

Пол­ное электрическое поле представится векторной суммой двух сигналов, находящихся в одной и той же фазе; оба сигнала од­новременно проходят и через максимум и через нуль. Суммарное поле должно быть равно сигналу R, повернутому на 45°. Макси­мальный звук будет получен, если повернуть детектор D на 45°, а не в вертикальном направлении. При повороте на прямой угол по отношению к указанному направлению звуковой сиг­нал, как легко проверить, должен быть равен нулю. И действи­тельно, именно это и наблюдается!

А как быть с запаздыванием? Как показать, что сигнал дейст­вительно запаздывает? Конечно, прибегнув к большому числу сложных устройств, можно измерить время прибытия сигнала, но есть другой, очень простой способ. Обратимся снова к фиг. 28.3 и предположим, что S1 и S2 находятся в одной фазе. Оба ис­точника колеблются одинаково и создают в точке 1 равные поля. Но вот мы перешли в точку 2, которая находится ближе к S2,, чем к S1. Тогда, поскольку запаздывание определяется величи­ной r/c, при разных запаздываниях сигналы будут приходить с разными фазами. Следовательно, должна существовать такая точка, для которой расстояния от D до S1 и S2 различаются на такую величину D, когда сигналы будут погашаться.

В этом случае D должна быть равна расстоянию, проходимо­му светом за половину периода колебаний генератора. Сдвинем­ся еще дальше и найдем точку, где разность расстояний соот­ветствует полному периоду колебаний, т.е. сигнал от первой антенны достигает точки 3 с запаздыванием по сравнению с сиг­налом от второй антенны, и это запаздывание в точности равно одному периоду колебаний. Тогда оба электрических поля сно­ва находятся в одной фазе и сигнал в точке 3 опять становится сильным.

На этом закончим описание экспериментальной проверки важнейших следствий формулы (28.6). Мы, конечно, не каса­лись вопроса об электрических полях, спадающих по закону 1/r, и не учитывали, что магнитное поле сопутствует электриче­скому при распространении сигнала. Для этого требуется до­вольно сложная техника вычислений, и вряд ли это что-либо добавит к нашему пониманию вопроса. Во всяком случае, мы установили свойства, наиболее важные для последующих при­ложений, а к другим свойствам электромагнитных волн мы еще вернемся.

Глава 29

ИНТЕРФЕРЕНЦИЯ

§ 1. Электромагнит­ные волны

§ 2. Энергия излучения

§ 3. Синусоидальные волны

§ 4. Два дипольных излучателя

§ 5. Математическое описание интерференции

§ 1. Электромагнитные волны

В этой главе мы будем обсуждать те же вопросы, что и в предыдущей, но с большими математическими подробностями. Качественно мы уже показали, что поле излучения двух ис­точников имеет максимумы и минимумы, и те­перь наша задача — дать математическое, а не просто качественное описание поля.

Мы вполне удовлетворительно разобрали физический смысл формулы (28.6), рассмотрим теперь некоторые ее математические черты. Прежде всего поле заряда, движущегося вверх и вниз с малой амплитудой в направлении 0 от оси движения, перпендикулярно лучу зрения и лежит в плоскости ускорения и луча зрения (фиг. 29.1). Обозначим расстояние через r, тогда в момент времени t величина электрического поля равна

(29.1)

где a(t-r/с) — ускорение в момент времени (t-r/с), или запаздывающее ускорение.

Интересно нарисовать картину распреде­ления поля в разных случаях. Наиболее характерный множитель в формуле (29.1) — это a (t-r/с);чтобы его понять, возьмем простейший случай q = 90° и изобразим поле на графике.

Фиг. 29.1. Напряженность поля Е, создаваемая положительным зарядом с запаздывающим ускорением а'.

Фиг. 29.2. Ускорение некоторого заряда как функция времени.

Раньше мы были заняты вопро­сом, как ведет себя поле в данной фиксированной точке пространства с течением времени. Теперь посмотрим, как выглядит поле в разных точках пространства в один и тот же момент времени. Иначе говоря, нам нужен «моментальный сни­мок» поля, из которого будет ясно, каково оно в разных местах. Разумеется, картина распределения поля зависит от ускорения заряда. Зададим характер движения заряда: пусть сначала он покоится, затем внезапно начнет определенным образом уско­ряться (как показано на фиг. 29.2) и, наконец, остановится. Затем, чуть позже, измерим поле в разных точках пространства. Мы можем утверждать, что поле будет иметь вид, приведенный на фиг. 29.3. В самом деле, поле в каждой точке определяется ускорением заряда в предыдущий момент времени, причем под словом «предыдущий» понимается r секунд назад. Чем дальше точка, тем более ранним моментом времени определяется для нее ускорение. Поэтому кривая на фиг. 29.3 в некотором смысле есть «обращенный» во времени график ускорения; время и расстояние отличаются постоянным множителем c, который часто выбирается равным единице. Этот факт легко заметить и в математической записи a(t-r/с). Ясно, что добав­ка интервала времени At и вычитание отрезка пути Dr=-cDt дают одну и ту же величину a(t-r/с).

Другими словами, увеличив время на Dt, можно восста­новить значение a(t-r/с) добавлением отрезка Dr= сDt, т. е. поле распространяется со временем как волна, уходящая от источника. Вот почему иногда говорят, что свет движется как волна. Можно также сказать, что поле запаздывает во времени, или иначе, что поле распространяется вширь с течением вре­мени.

Фиг. 29.3. Электрическое поле как функция положения точки на­блюдения спустя некоторый про­межуток времени.

Множителем 1/r пренебрегаем.

Особый интерес представляет случай периодических коле­баний заряда q. В опыте, рассмотренном в гл. 28, смещение за­рядов x в момент t равнялось некоторой константе х0, амплитуде колебаний, умноженной на coswt. Ускорение в этом случае равно

(29.2)

Отвлечемся пока от угла q и постоянных и посмотрим, как ведет себя Е (29.3) в зависимости от времени или координат.

§ 2. Энергия излучения

Как мы уже говорили, в любой момент времени и в любой точке пространства напряженность поля меняется обратно пропорционально расстоянию r. Следует заметить, что энергия, несомая волной, и любые энергетические характеристики элек­трического поля пропорциональны квадрату поля. Пусть, на­пример, заряд или осциллятор находится в электрическом поле и под влиянием поля начинает двигаться. Для линейного осцил­лятора смещение, ускорение и скорость, возникающие под дей­ствием поля, прямо пропорциональны величине поля. Поэтому кинетическая энергия заряда пропорциональна квадрату поля. Мы примем, что энергия, которую поле может передать какой-либо системе, пропорциональна квадрату поля.

Отсюда следует, что энергия, получаемая в данном месте от источника поля, уменьшается по мере удаления от источника, точнее, она падает обратно пропорционально квадрату расстоя­ния. Существует очень простая интерпретация этого факта: соберем энергию волны, попадающую в конус с вершиной в ис­точнике, сначала на расстоянии r1 (фиг. 29.4), а затем на расстоя­нии r2; тогда количество энергии, падающее на единичную пло­щадку, обратно пропорционально квадрату расстояния r, а площадь поверхности внутри конуса растет прямо пропорцио­нально квадрату расстояния r от поверхности до вершины ко­нуса. Таким образом, на каком бы расстоянии от вершины конуса мы ни находились, энергия, проходящая внутри конуса, одна и та же! В частности, если окружить источник со всех сто­рон поглощающими осцилляторами, то полное количество энер­гии, поступающее в них от волны, будет постоянным, незави­симо от расстояния до источника.

Фиг. 29.4. Количество энергии, протекающей внутри конуса OABCD, не зависит от расстоя­ния r, на котором оно измеряется.

Закон спадания поля Е как 1/r эквивалентен утверждению, что имеется поток энергии, ко­торый нигде не теряется; при этом энергия распространяется на все большие и большие области пространства. Таким образом, заряд, колеблясь, безвозвратно теряет энергию, уходящую все дальше и дальше. Заряд не может вернуть излученную энергию с тех расстояний, где применимо наше рассмотрение; для доста­точно больших расстояний от источника вся излученная энер­гия уходит прочь. Конечно, энергия не исчезает бесследно и ее можно поглотить с помощью других систем. Потери энергии на излучение мы будем изучать в гл. 32.

Рассмотрим теперь более подробно волны вида (29.3) как функции времени в данном месте и как функции расстояния в данный момент времени. Как и раньше, будем отвлекаться от постоянных множителей и множителя 1/r.

1 ... 7 8 9 10 11 12 13 14 15 ... 27
Перейти на страницу:
Открыть боковую панель
Комментарии
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?
Анна
Анна 07.12.2024 - 00:27
Какая прелестная история! Кратко, ярко, захватывающе.
Любава
Любава 25.11.2024 - 01:44
Редко встретишь большое количество эротических сцен в одной истории. Здесь достаточно 🔥 Прочла с огромным удовольствием 😈