Категории
Самые читаемые
ChitatKnigi.com » 🟠Домоводство, Дом и семья » Прочее домоводство » Курс общей астрономии - неизвестен Автор

Курс общей астрономии - неизвестен Автор

Читать онлайн Курс общей астрономии - неизвестен Автор
1 ... 97 98 99 100 101 102 103 104 105 ... 109
Перейти на страницу:

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать

СОЛНЦЕ

Солнце - типичная звезда, свойства которой изучены подробнее и лучше, чем других звезд, благодаря ее исключительной близости к Земле. В этой главе мы не только кратко рассмотрим имеющуюся информацию о Солнце, но и несколько подробнее те его свойства, которые характерны для всех звезд, что окажется весьма полезным при изучении их физической природы.

§ 116. Общие сведения о Солнце

Солнце представляется кругом с резко очерченным краем (лимбом). Видимый радиус Солнца несколько меняется в течение года вследствие изменения расстояния Земли от Солнца, вызванного эллиптичностью земной орбиты. Когда Земля в перигелии (начало января) видимый диаметр Солнца составляет 32’35”, а в афелии (начало июля) -33'31". На среднем расстоянии от Земли (1 а.е.) видимый радиус Солнца составляет 960", что соответствует линейному радиусу

Объем Солнца а его масса что дает среднюю плотность его вещества Ускорение силы тяжести на поверхности Солнца Наблюдения отдельных деталей на солнечном диске, а также измерения смещений спектральных линий в различных его точках говорят о движении солнечного вещества вокруг одного из солнечных диаметров, называемого осью вращения Солнца. Плоскость, проходящая через центр Солнца и перпендикулярная к оси вращения, называется плоскостью солнечного экватора. Она образует с плоскостью эклиптики угол в 7° 15' и пересекает поверхность Солнца по экватору. Угол между плоскостью экватора и радиусом, проведенным из центра Солнца в данную точку на его поверхности называется гелиографической широтой. Вращение Солнца обладает важной особенностью: его угловая скорость w убывает по мере удаления от экватора и приближения к полюсам (рис. 122), так что в среднем w = 14°,4 - 2°,7 sin2В, где В - гелиографическая широта. В этой формуле угловая скорость w измеряется углом поворота за сутки.

Таким образом, различные зоны Солнца вращаются вокруг оси с различными периодами. Для точек экватора сидерический период составляет 25 суток, а вблизи полюсов он достигает 30 суток. Вследствие движения Земли вокруг Солнца его вращение представляется земному наблюдателю несколько замедленным: период вращения на экваторе составляет 27 суток, а у полюсов - 32 суток (синодический период вращения). Поскольку Солнце вращается не как твердое тело, систему гелиографических координат нельзя жестко связать со всеми точками его поверхности. Условно гелиографические меридианы жестко связываются с точками, имеющими гелиографические широты В = ±16°. Для них сидерический период обращения составляет 25,38 суток, а синодический равен 27,28 суток. За начальный гелиографический меридиан принят тот, который 1 января 1854 г. в 0h по всемирному времени проходил через точку пересечения солнечного экватора с эклиптикой.

§ 117. Спектр и химический состав Солнца

В видимой области излучение Солнца имеет непрерывный спектр, на фоне которого заметно несколько десятков тысяч темных линий поглощения (рис. 123), называемых фраунгоферовыми по имени австрийского физика Фраунгофера, впервые описавшего эти линии в 1814 г.

Наибольшей интенсивности непрерывный спектр достигает в синезеленой части спектра, у длин волн 4300-5000 Å (см рис. 91). В обе стороны от максимума интенсивность солнечного излучения убывает. Солнечный спектр далеко простирается в невидимые коротковолновую и длинноволновую области. Результаты внеатмосферных наблюдений спектра Солнца, полученные с ракет и искусственных спутников показывают, что до длин волн около 2000 Å характер солнечного спектра такой же, как и в видимой области. Однако в более коротковолновой области он резко меняется: интенсивность непрерывного спектра быстро падает, г темные фраунгоферовы линии сменяются яркими эмиссионными (рис. 124).

Инфракрасная область солнечного спектра до 15 мк частично поглощается при прохождении сквозь земную атмосферу (рис. 125). Здесь расположены полосы молекулярного поглощения, принадлежащие в основном водяным парам, кислороду и углекислому газу. С Земли видны лишь некоторые участки солнечного спектра между этими полосами. Для длин волн, больших 15 мк, поглощение становится полным, и спектр Солнца доступен наблюдениям только с больших высот или внеатмосферными методами. Поглощение спектра Солнца молекулами воздуха продолжает оставаться сильным вплоть до области радиоволн длиной около 1 см, для которых земная атмосфера снова становится прозрачной. При этом обнаруживается, что в радиодиапазоне интенсивность солнечного спектра значительно больше, чем должна быть у тела с температурой 6000°. Убывание интенсивности радиоспектра Солнца с ростом длины волны в диапазоне метровых волн происходит так же, как и у абсолютно черного тела, имеющего температуру в миллион градусов. Другой важной особенностью радиоизлучения Солнца является его переменность, увеличивающаяся с ростом длины волны. Этим радиодиапазон существенно отличается от видимой области спектра, интенсивность которой исключительно постоянна. Подобной же переменностью обладает и рентгеновское излучение Солнца.

Важнейшей особенностью солнечного спектра от длины волны около 1600 Å до инфракрасного диапазона является наличие темных фраунгоферовых линий поглощения. По длинам волн они в точности соответствуют линиям испускания разреженного светящегося газа. Появление их в поглощении в спектре солнечной атмосферы обусловлено значительно большей ее непрозрачностью к излучению в этих линиях, чем в соседнем непрерывном спектре. Тем самым в них мы наблюдаем излучение, исходящее от более наружных, а следовательно, и более холодных слоев. Дополнительное поглощение вызвано соответствующими атомами, которые возбуждаются за счет поглощенных квантов. Возбужденные атомы тут же переизлучают поглощенную энергию, причем одинаково по всем направлениям. Этот процесс называется атомным рассеянием. Он наиболее важен при образовании фраунгоферовых линий. Поэтому по их интенсивности можно судить о количестве рассеивающих атомов в атмосфере. Самая сильная линия солнечного спектра находится в далекой ультрафиолетовой области. Это - резонансная линия водорода La (Лайман-альфа) с длиной волны 1216 Å (рис. 124). В видимой области наиболее интенсивны резонансные линии H и К ионизованного кальция (см. рис. 123). После них по интенсивности идут первые линии бальмеровской серии водорода Нa , Hb , Нg , затем резонансные линии натрия D1 и D2 , линии магния, железа, титана и других элементов (см. рис. 123). Остальные многочисленные линии отождествляются со спектрами примерно 70 известных химических элементов из таблицы Д.И. Менделеева и хорошо изученных в лаборатории. Присутствие этих линий в спектре Солнца свидетельствует о наличии в солнечной атмосфере соответствующих элементов. Таким путем установлено присутствие на Солнце водорода, гелия, азота, углерода, кислорода, магния, натрия, кальция, железа и многих других элементов. Для количественного определения содержания различных химических элементов на Солнце необходимо применить метод, описанный в § 109. Результаты показывают, что вещество Солнца имеет тот же химический состав, что и другие космические объекты (кроме Земли и других планет), среднее содержание элементов в которых приведено в табл. 3. Преобладающим элементом на Солнце является водород. По числу атомов его примерно в 10 раз больше, чем всех остальных элементов, и на его долю приходится около 70% всей массы Солнца (водород - самый легкий элемент). Следующим по содержанию элементом является гелий - около 29% массы Солнца. На остальные элементы, вместе взятые, приходится чуть больше 1%. В некоторых случаях важно знать содержание элементов, обладающих определенными свойствами. Так, например, общее количество атомов металлов в атмосфере Солнца почти в 10 000 раз меньше, чем атомов водорода.

§ 118. Солнечная постоянная и ее измерение

Для многих задач астрофизики и геофизики важно знать точную величину мощности солнечного излучения. Поток излучения от Солнца принято характеризовать так называемой солнечной постоянной, под которой понимают полное количество солнечной энергии, проходящей за 1 минуту через перпендикулярную к лучам площадку в 1 см2, расположенную на среднем расстоянии Земли от Солнца. Согласно большому количеству измерений, значение солнечной постоянной Q в настоящее время известно с точностью до 1 %: Q = 1,95 кал/см2× мин = 1,36 ×106 эрг/см2× сек = 1360 вт/м2. Умножая эту величину на площадь сферы с радиусом в 1 а.е., получим полное количество энергии, излучаемой Солнцем по всем направлениям в единицу времени, т.е. его интегральную светимость, равную 3,8×1033 эрг/сек. Единица поверхности Солнца (1 см2 ) излучает 6,28×1010 эрг/см2× сек. На основании большого числа тщательных измерений можно сказать, что интегральная светимость Солнца отличается исключительным постоянством. Если и существуют слабые колебания солнечной постоянной, то они должны быть заведомо меньше 1 %. У поверхности Земли поток солнечного излучения уменьшается из-за поглощения и рассеяния в земной атмосфере и в среднем составляет 800-900 вт/м2. Измерение солнечной постоянной - очень сложная задача, требующая проведения целой серии тщательных наблюдений с приборами двух различных типов. Приборы первого типа называются пиргелиометрами. Их задача - измерить в абсолютных энергетических единицах полное количество солнечной энергии, падающей за определенное время на площадку известной величины. Однако показание пиргелиометра не дает еще непосредственного значения солнечной постоянной из-за того, что часть излучения Солнца поглощается при прохождении сквозь земную атмосферу. Чтобы учесть это поглощение, одновременно с измерениями на пиргелиометре проводят серию измерений распределения энергии в спектре Солнца на другом приборе - спектроболометре, обладающем одинаковой чувствительностью к лучам различных длин волн. Эти измерения проводятся для нескольких значений зенитных расстояний Солнца, когда его лучи проходят сквозь различную толщину слоя воздуха. Для каждой длины волны можно построить в виде графика зависимость интенсивности солнечного излучения от воздушной массы (рис. 126). Воздушной массой называется отношение оптической толщины слоя воздуха в данном направлении и в направлении на зенит. Из геометрических соображений (рис. 127) видно, что для плоскопараллельных слоев атмосферы воздушная масса пропорциональна секансу зенитного расстояния (sec z).

1 ... 97 98 99 100 101 102 103 104 105 ... 109
Перейти на страницу:
Открыть боковую панель
Комментарии
Jonna
Jonna 02.01.2025 - 01:03
Страстно🔥 очень страстно
Ксения
Ксения 20.12.2024 - 00:16
Через чур правильный герой. Поэтому и остался один
Настя
Настя 08.12.2024 - 03:18
Прочла с удовольствием. Необычный сюжет с замечательной концовкой
Марина
Марина 08.12.2024 - 02:13
Не могу понять, где продолжение... Очень интересная история, хочется прочесть далее
Мприна
Мприна 08.12.2024 - 01:05
Эх, а где же продолжение?