Делай космос! - Виталий Егоров (Zelenyikot)
- Категория: 🟢Научные и научно-популярные книги / Физика
- Название: Делай космос!
- Автор: Виталий Егоров (Zelenyikot)
- Возрастные ограничения:Книга может включать контент, предназначенный только для лиц старше 18 лет.
- Поделиться:
Шрифт:
Интервал:
Закладка:
Виталий Егоров
Делай космос!
© В.Егоров, текст, изображения, инфографика
© ООО «Издательство АСТ»
1. Что такое автоматические межпланетные станции?
1.1. Из чего состоят Автоматические межпланетные станции
Автоматическая межпланетная станция – это беспилотный космический аппарат, который запускают с Земли для исследования межпланетного пространства и различных тел Солнечной системы: Солнца, планет и их спутников, комет и астероидов, межпланетной пыли и газа. Для того чтобы околоземный спутник стал автоматической межпланетной станцией, ему требуется развить вторую космическую скорость – 11 км/с или около 40 000 км/ч – для преодоления силы притяжения Земли и выхода на околосолнечную орбиту. Иными словами, межпланетный полет – это полет по орбите вокруг Солнца.
Нескольким космическим аппаратам удалось развить третью космическую скорость (~16,6 км/с), которая позволила им преодолеть силу притяжения Солнца. Такой полет уже является межзвездным, несмотря на то, что путь до соседних звезд займет десятки тысяч лет.
Автоматические межпланетные станции еще иногда называют зондами, потому что они занимаются научными исследованиями, то есть зондируют при помощи различных приборов межпланетное пространство и встречные космические тела.
Некоторые автоматические межпланетные станции отправляют в путешествие для исследования нескольких целей (например, астероидов и комет) с пролетных или облетных траекторий, и тогда станции или зонды остаются на околосолнечной орбите. Для других же аппаратов выбирают определенные цели, например: выход на орбиту вокруг Луны или Венеры или посадку на Марс, в таком случае их межпланетное путешествие вокруг Солнца завершается у цели исследования, и они совершают маневр торможения для изменения орбиты.
Космический аппарат – это сложная многофункциональная система, которая должна работать в суровых условиях далеко от Земли, поэтому все космические аппараты долго и старательно разрабатывают, многократно испытывая перед стартом.
Для маневрирования в космосе зонды оснащаются ракетными двигательными установками, а для изучения космоса – научными приборами: телескопами, спектрометрами, радарами, лазерами.
Во время миссий перед космическим аппаратом стоит несколько задач:
1. Обеспечивать себя электричеством при помощи система электропитания. Она сохраняет рабочую температуру за счет системы обеспечения теплового режима.
2. Уметь определять свое положение в пространстве, используя систему ориентации.
3. Передавать данные и получать управляющие команды посредством бортового радиокомплекса.
Научные приборы называют полезной нагрузкой, а все вспомогательные средства – служебными системами или платформой космического аппарата.
Компоновка автоматической межпланетной станции на примере NASA Lunar Reconnaissance Orbiter (американский спутник на орбите вокруг Луны).
Маршевая двигательная установка – необходима для изменения скорости полета и совершения орбитальных маневров: достижения второй космической скорости, торможения для выхода на целевую (рабочую) орбиту, изменения формы орбиты и ее наклонения.
Двигатели системы ориентации – используются для управления ориентацией автоматической межпланетной станции, то есть изменения положения космического аппарата относительно центра его массы. При помощи системы ориентации меняется направление «взгляда» телескопов и фотокамер, направленность радиоантенны, угол освещения солнечных батарей.
Звездные датчики – фотокамеры для определения положения космического аппарата относительно центра его масс при помощи ориентации по звездам. Определяя, на какие звезды и созвездия направлены звездные датчики, космический аппарат понимает, куда смотрят его камеры, направлена антенна и развернуты солнечные батареи.
Солнечные датчики – фотоэлементы, которые позволяют определить направление на Солнце и освещенность солнечных батарей.
Солнечные батареи – средство получения электрической энергии для электропитания всех служебный систем и полезной нагрузки.
Остронаправленная антенна бортового радиокомплекса – используется для передачи больших объемов научных данных с космического аппарата на наземные радиостанции и радиотелескопы.
Малонаправленные антенны – используются для передачи служебной информации о «жизнедеятельности» космического аппарата на близком расстоянии от Земли или для связи с другими космическими аппаратами поблизости.
Магнитометр – научный прибор для определения направления и напряженности магнитного поля.
Оптические научные приборы – телескопы и спектрометры для изучения атмосферы или поверхности космических тел.
Навигационные камеры – телескопы и фотокамеры, которые помогают осматривать изучаемое космическое тело, выбирать цели для научных камер и спектрометров.
Лазерный высотомер — средство для изучения рельефа.
Радар – прибор, зондирующий поверхность космических тел при помощи облучения радиоволнами и регистрации отраженных волн.
Нейтронный детектор – прибор, улавливающий тяжелые элементарные частицы без электрического заряда – нейтроны, вылетающие с поверхности космических тел, что позволяет определять содержание водорода в грунте.
1.2. Как узнать состав других планет: спектроскопия
Практически всё, что мы знаем о химическом строении космоса, включая Землю и нас самих, мы знаем благодаря спектроскопии. Излучение, отражение и поглощение элементарных частиц переносчиков света – фотонов – базовое свойство наблюдаемой материи, благодаря которому мы можем изучать не только те образцы, что попали в наши руки, но и те, что находятся за миллионы километров и миллиарды световых лет.
Для нас является привычным делом то, что разные предметы окружающего мира имеют разные цвета. Многие, вероятно, замечали, что горение различных материалов может сопровождаться пламенем различного цвета: так лесной костер – оранжевый, газовая конфорка кухонной плиты горит голубым, а если в костер бросить пластиковый стаканчик или кусок пенопласта, то можно увидеть и зеленое пламя. Такие, казалось бы, простые вещи, позволяют изучать Вселенную.
Поверхность далекой планеты или любого предмета у нас на столе имеет цвет, зависящий от химического состава веществ, покрывающих или составляющих эту поверхность. То же касается горящего огня или горящей звезды, только здесь цвет зависит от того, какие химические элементы испускают фотоны света.
Разница в видимых цветах, которые воспринимают наши глаза, зависит от длины волны безмассовых фундаментальных элементарных частиц – фотонов, чей поток мы и воспринимаем как свет. Короткая волна дает синий цвет, длинная – красный. Когда свет содержит фотоны всех видимых длин волн, наши глаза видят белый цвет, а если его разделить на составляющие цвета, то мы увидим спектр света.
Естественный спектр солнечного света – радугу видел, наверное, каждый. Конечно, радуга – хороший пример, но не самый удобный способ изучения спектра Солнца. Для искусственного наблюдения спектра используют стеклянную призму и специальный прибор – спектрометр. В зависимости от химического состава источника света его спектр будет отличаться, и на определении этой разницы основан принцип спектрометрии.
Ученые составили полную картотеку спектров известных химических веществ и теперь им достаточно сравнить, например, спектр далекой звезды с имеющейся на Земле картотекой, чтобы узнать, какие вещества звезды испускают свет, добравшийся до нас. Если в состав этой звезды будет входить какой-либо неизвестный науке химический элемент – его также определят, поскольку он будет отличаться ото всех известных. Именно так в 1868 году на Солнце обнаружили гелий, который в то время еще не был известен на Земле.
Свет может добираться до наших глаз или до спектроскопа двумя способами: непосредственно от источника или отраженным.
Источники излучения света – это Солнце, звезды, открытый огонь, лампочка, раскаленный до высокой температуры предмет и т. п. Для источников света характерен спектр испускания – та самая радуга.
Отраженный свет мы видим, например, от Луны, от поверхности Земли, от камней и почти всех предметов, которые нас окружают. Для отраженного света определяют спектр поглощения, то есть сначала учитывается спектр падающего на поверхность света, например от Солнца, а затем спектрометр определяет, на каких длинах волн свет был поглощен поверхностью, а на каких отразился. Также спектр поглощения помогает изучать состав газов в атмосферах других планет. Спектр поглощения отраженного света будет содержать темные участки, которые возникли из-за рассеяния и поглощения фотонов. То же касается изучения атмосфер других планет, – проходя сквозь газовую оболочку, свет звезды рассеивается на элементах и химических соединениях, составляющих ее, что отражается в спектре и позволяет понять химический состав атмосферы.